Движение по траектории. Траектория Правило сложения векторов

Для применения естественного способа задания движения точки должна быть известна ее траектория. Траектория может быть задана различными способами :

Уравнениями (возможно с неравенствами), например,

Словесно, например, радиус окружности равен 3м;

В виде графика в масштабе.

Для задания закона движения точки по известной траектории необходимо:

- выбрать на траектории начало отсчета расстояний – точку О и указать направление положительного отсчета (знак «+»);

Выбрать начало отсчета времени t =0, обычно за начало отсчета времени принимают или начало движения или момент времени, когда движущаяся точка М проходит через точку О.

Закон движения точки М по траектории имеет вид:

где - непрерывная дважды дифференцируемая функция, причем это выражение определяет положение точки на траектории, но не пройденный ею путь.

.

Если при , то

.

Если известен закон движения точки в декартовых координатах, то

,

где знак «+» или «–» определяется выбором положительного или отрицательного направления отсчета расстояний по траектории. Это выражение устанавливает связь естественного способа задания движения точки с координатным.

Скорость точки равна:

,

Но единичный вектор направлен по касательной к траектории в сторону движения точки М, следовательно, скорость точки М направлена по касательной к траектории в сторону движения и равна

Совместим с движущейся по траектории точкой М начало подвижной системы координат – оси естественного трехгранника Мtnb. Ось Mt - касательную направим по касательной к траектории в сторону движения точки. Ось Мn главную нормаль направим перпендикулярно Мt в сторону вогнутости траектории так, чтобы эти оси образовали соприкасающуюся плоскость . Ось Мb- бинормаль направим перпендикулярно соприкасающейся плоскости в сторону, откуда поворот от оси Мt к оси Mn виден против хода часовой стрелки. Образовались еще две координатные плоскости: Mnb - нормальная и Mtb спрямляющая.

Пусть точка М переместилась в положение М 1 . Векторы ее скорости в этих точках образуют угол смежности φ .

,

k – кривизна кривой в точке М,

ρ – радиус кривизны кривой в точке М.

Ускорение точки М равно:

,

но , следовательно

.

Вектор ускорения точки М разложен на две взаимно перпендикулярные составляющие лежащие в соприкасающейся плоскости.

Четверг, 09 Октября 2014 г. 13:07 + в цитатник

Многие из вас, те кто занимается флешками, умеют делать классическую анимацию движения. При этом объект помещается в определенную точку в первом ключевом кадре, а затем перемещается в другую ключевую точку. На Временной шкале между этими ключевыми точками создаётся определённое количество простых промежуточных кадров.
Объект анимации при этом движется из одной ключевой точки в другую строго по прямой линии.

Как же заставить объект анимации двигаться по заданной траектории. Для этого эту траектории, во - первых, надо конечно же задать. Во - вторых, привязать наш объект к этой траектории. Такая траектория во флеш называется Направляющей.

И так, разберёмся подробнее как же создать движение объекта по заданной траектории. Будем анимировать осенние листики.
Для этого создадим новый флеш документ Action Script 3
Файл - Создать


Далее на Временной шкале Основного рабочего поля (Монтажный кадр 1) создаём 2 слоя
1. Фон
2. Листики
Временная шкала Основного рабочего поля (Монтажный кадр 1) будет выглядеть следующим образом.

Сохраняем созданный проект под каким либо названием, например "Падающий лист"

В Библиотеку программы импортируем любую картинку с осенним фоном и файл AI "Лист", который можно скачать из вложения ниже


Вложение:

Файл - Импорт - Импортировать в библиотеку

После загрузки в Библиотеке будут следующие файлы

Инструментом "Стрелка" на слой "Фон" на основном Рабочем поле Монтажный кадр 1 из Библиотеки перетаскиваем фоновую картинку и, либо изменяем размеры Рабочего поля под размеры картинки, либо трансформируем размеры картинки под размеры Рабочего поля.

После того как в диалоговом окне создания нового символа нажмёте "ОК", то попадаем в окно редактирования символа "Лист". Переименовываем Слой 1 на Временной шкале в "Анимация лист"
Из Библиотеки инструментом "Стрелка" на Рабочее поле символа "Лист" добавляем графический символ "Лист".

На Временной шкале на слое "Анимация лист" щелкаем в кадре 140 и, вызвав контекстное меню, выбираем пункт "Вставить ключевой кадр".

Между кадрами 1 и 140 появились промежуточные кадры. Теперь щелкаем на любом кадре между первым и сто сороковым и, в появившемся контекстном меню, выбираем пункт "Создать классическую анимацию движения". После этого автоматически такая анимация будет создана.

Добавленный на Рабочее поле листик, мы пока не трогаем, а продолжаем работать с Временной шкалой.
На Временной шкале щелкаем 140 (последний и ключевой) кадр нашей анимации и, вызвав контекстное меню, также выбираем пункт "Создать классическую анимацию движения". Таким образом мы включаем последний 140 ключевой кадр в созданную нами классическую анимацию движения.

Теперь пришло время создать траекторию по которой будет лететь наш объект "Падающий лист"
Для этого щелкаем по слою "Анимация лист" и, вызвав контекстное меню, выбираем пункт "Добавить направляющую классической анимации".

После этого мы увидим, что на Временной шкале появился новый слой - "Направляющая", а слой "Анимация лист" оказался в "подчинении" у этого слоя.

Теперь, траектория для движения объекта, созданная на слое "Направляющая", будет руководством к действию (движению) для слоя "Анимация лист", то есть вся классическая анимация движения созданная на слое "Анимация лист", будет происходит по траектории изображенной на слое "Направляющая".
Слой "Направляющая" при этом является рабочим и вся графика размещённая на нём при публикации флеш ролика отображаться не будет.
Итак создадим (нарисуем) на слое "Направляющая" какую - либо траекторию для падения осеннего листочка сверху вниз.
Для рисования траектории воспользуемся инструментом "Карандаш" в режиме "Режим карандаша со сглаживанием" и, выделив слой "Направляющая" и его первый кадр, изобразим кривую линию для необходимой траектории.

После того как направляющая линия создана, переходим на слой "Анимация лист", выделяем первый ключевой кадр и начинаем создавать классическую анимацию движения для падающего листика. Для этого Инструментом "Стрелка" помещаем листик в начало нарисованной нами траектории. При этом точка регистрации нашего листика (в нашем случае точка регистрации находится в центре) должна обязательно!!! находится на линии траектории направляющей.

При этом щелкните ещё раз на первом кадре слоя "Анимация лист" и убедитесь, что он выделен. Теперь откройте вкладку "Свойства" и найдите там раздел "Анимация". Проставьте галочки в чекбоксах, как указано на картинке.

На слое "Анимация лист" щёлкните 140 (последний) ключевой кадр и Инструментом "Стрелка" поместите наш осенний листик в конец нарисованной траектории. При этом точка регистрации графического объекта листик также должна находится на линии траектории движения.
Либо если привязка к "Направляющей" у вас сработает без всяких проблем, то когда вы щелкните последний кадр анимации, листочек автоматически сам переместиться в конец направляющей.

После этого ещё раз щелкните 140 кадр, чтобы убедиться, что он выделен и открыв вкладку "Свойства" в разделе "Анимация" также проставьте галочки в чекбоксах, как указано на картинке.

Ещё раз щёлкните по выбору любой кадр на слое "Анимация лист", например 40 кадр, и убедитесь, что наш листик двигается строго по нарисованной траектории.

Если всё нормально, то анимация "Падающего листа" по заданной траектории создана и можно вернуться на Основную Рабочую сцену - Монтажный кадр 1.
Находясь на Монтажном кадре 1, выделите слой "листики" и Инструментом "Стрелка" перетащите из Библиотеки на него видеоролик "Лист", поместив его в самом верху фоновой картинки.

Видеоролику "Лист" примените фильтр "Тень" со следующими параметрами. Напоминаю, что раздел "Фильтры" можно найти на вкладке "Свойства".

Зажав клавиши Shift+Ctrl можно размножить видеоролик "Лист" и получить несколько падающих листиков. С помощью Инструмента "Свободное преобразование" можно изменить размер и угол поворота видеоролика "Лист", чтобы листочки падали не совсем одинаково.

Зажав клавиши Ctrl+Enter просматриваем полученный в результате флеш ролик. Если всё устраивает, то сохраняем флешку как проект в формате FLA
Файл - Сохранить
Экспортируем флеш ролик для дальнейшей публикации
Файл - Экспорт - Экспортировать ролик

Основные понятия кинематики и кинематические характеристики

Движение человека является механическим, то есть это изменение тела или его частей относительно других тел. Относительное перемещение описывает кинематика.

Кинематика раздел механики, в котором изучается механическое движение, но не рассматриваются причины, вызывающие это движение . Описание движения как тела человека (его частей) в различных видах спорта, так и различных спортивных снарядов являются неотъемлемой частью спортивной биомеханики и в частности кинематики.

Какой бы материальный объект или явление мы не рассматривали, окажется что вне пространства и вне времени ничего не существует. Любой предмет имеет пространственные размеры и форму, находится в каком-то месте пространства по отношению к другому предмету. Любой процесс, в котором участвуют материальные объекты, имеет во времени начало и конец, сколько то длится во времени, может совершаться раньше или позже другого процесса. Именно по этому возникает необходимость измерять пространственную и временную протяжённости.

Основные единицы измерения кинематических характеристик в международной системе измерений СИ.

Пространство. Одна сорокамиллионная часть длины земного меридиана, проходящего через Париж, была названа метром. Поэтому длина измеряется в метрах (м) и кратных ему единицах измерения: километрах (км), сантиметрах (см) и т. д.

Время – одно из фундаментальных понятий. Можно сказать, что это то, что отделяет два последовательных события. Один из способов измерить время – это использовать любой регулярно повторяющийся процесс. Одна восьмидесяти шести тысячная часть земных суток была выбрана за единицу времени и была названа секундой (с) и кратных ей единицах (минутах, часах и т. д.).



В спорте используются специальные временные характеристики:

Момент времени (t) - это временная мера положения материальной точки, звеньев тела или системы тел . Моментами времени обозначают начало и окончание движения или какой либо его части или фазы.

Длительность движения (∆t) – это его временная мера, которая измеряется разностью моментов окончания и начала движения ∆t = tкон. – tнач.

Темп движения (N) – это временная мера повторности движений, повторяющихся в единицу времени . N = 1/∆t; (1/c) или (цикл/c).

Ритм движений это временная мера соотношения частей (фаз) движений . Он определяется по соотношению длительности частей движения.

Положение тела в пространстве определяют относительно некоторой системы отсчёта, которая включает в себя тело отсчёта (то есть относительно чего рассматривается движение) и систему координат, необходимую для описания на качественном уровне положение тела в той или иной части пространства.

С телом отсчёта связывают начало и направление измерения. Например, в целом ряде соревнований началом координат можно выбрать положение старта. От него уже рассчитывают различные соревновательные дистанции во всех циклических видах спорта. Тем самым в выбранной системе координат «старт – финиш» определяют расстояние в пространстве, на которое переместится спортсмен при движении. Любое промежуточное положение тела спортсмена во время движения характеризуется текущей координатой внутри выбранного дистанционного интервала.

Для точного определения спортивного результата правилами соревнований предусматривается по какой точке (пункт отсчёта) ведётся отсчёт: по носку конька конькобежца, по выступающей точке грудной клетки бегуна-спринтера, или по заднему краю следа приземляющегося прыгуна в длину.

В некоторых случаях для точного описания движения законов биомеханики вводится понятие материальная точка.

Материальная точка это тело, размерами и внутренней структурой которого в данных условиях можно пренебречь .

Движение тел по характеру и интенсивности могут быть различными. Чтобы охарактеризовать эти различия, в кинематике вводят ряд терминов, представленных ниже.

Траектория линия, описываемая в пространстве движущейся точкой тела . При биомеханическом анализе движений прежде всего рассматривают траектории движений характерных точек человека. Как правило, такими точками являются суставы тела. По виду траектории движений делят на прямолинейные (прямая линия) и криволинейные (любая линия, отличная от прямой).

Перемещение это векторная разность конечного и начального положения тела . Следовательно, перемещение характеризует окончательный результат движения.

Путь это длина участка траектории, пройденной телом или точкой тела за выбранный промежуток времени .

КИНЕМАТИКА ТОЧКИ

Введение в кинематику

Кинематикой называют раздел теоретической механики, в котором изучается движение материальных тел с геометрической точки зрения незави­симо от приложенных сил.

Положение движущегося тела в пространстве всегда определяется по отношению к любому другому неизменяемому телу, называемому телом отсчета . Система координат, неизменно связанная с телом отсчета, называется системой отсчета . В механике Ньютона время считается абсолютным и не связанным с движущейся материей. В соответствии с этим оно протекает одинаково во всех системах отсчета независимо от их движения. Основной единицей измерения времени является секунда (с) .

Если положение тела по от­ношению к выбранной системе отсчета с течением времени не изменяется, то говорят, что тело относительно данной системы отсчета находится в покое . Если же тело изменяет свое положение относительно выбранной системы от­счета, то говорят, что оно движется по отношению к этой системе. Тело может находиться в состоянии покоя по отношению к одной системе отсчета, но дви­гаться (и притом совершенно различным образом) по отношению к другим сис­темам отсчета. Например, пассажир, неподвижно сидящий на скамье движуще­гося поезда, покоится относительно системы отсчета, связанной с вагоном, но движется по отношению к системе отсчета, связанной с Землей. Точка, лежа­щая на поверхности катания колеса, движется по отношению к системе отсчета, связанной с вагоном, по окружности, а по отношению к системе отсчета, свя­занной с Землей, по циклоиде; та же точка покоится по отношению к систе­ме координат, связанной с колесной парой.

Таким образом, движение или покой тела могут рассматриваться лишь по от­ношению к какой-либо выбранной системе отсчета . Задать движение тела отно­сительно какой-либо системы отсчета -значит дать функциональные зависи­мости, с помощью которых можно определить положение тела в любой момент времени относительно этой системы. Различные точки одного и того же тела по отношению к выбранной системе отсчета движутся по-разному. Например, по отношению к системе, связанной с Землей, точка поверхности ката­ния колеса движется по циклоиде, а центр колеса - по прямой. Поэтому изучение кинема­тики начинают с кинематики точки.

§ 2. Способы задания движения точки

Движение точки может быть задано тремя способами: естественным, векторным и координатным.

При естественном способе задания движения дается траектория, т. е. линия, по которой движется точка (рис.2.1). На этой траектории выбирается некоторая точка , принимаемая за начало от­счета. Выбираются положительное и отрицательное направления отсчета дуговой координаты , определяющей положение точки на траектории. При движе­нии точки расстояние будет изменяться. Поэтому, чтобы определить положение точки в любой момент времени, достаточно задать дуговую коор­динату как функцию времени:

Это равенство называется уравнением движения точки по данной траектории .

Итак, движение точки в рассматриваемом случае определяется совокупностью следующих данных: траектории точки, положения начала отсчета дуговой координаты, положительного и отрицательного направлений отсчета и функции .

При векторном способе задания движения точки положение точки определя­ется величиной и направлением радиуса-вектора , проведенного из неподвиж­ного центра в данную точку (рис. 2.2). При движении точки ее радиус-вектор изменяется по величине и направлению. Поэтому, чтобы оп­ределить положе­ние точки в любой момент времени, достаточно задать ее радиус-вектор как функцию времени:

Это равенство называется векторным уравнением движения точки .

При координатном способе задания движения положение точки по отношению к выбранной системе отсчета определяется при помощи прямоугольной системы декартовых координат (рис. 2.3). При движении точки ее координаты изменяются с течением времени. Поэтому, чтобы определить положение точки в любой момент времени, достаточно задать координаты , , как функции времени:

Эти равенства называются уравнениями движения точки в прямоугольных де­картовых координатах . Движение точки в плоскости определяется двумя уравне­ниями системы (2.3), прямолиней­ное дви­жение - одним.

Между тремя описанными способами задания движения существует вза­имная связь, что позволяет от одного способа задания движения перейти к другому. В этом легко убедиться, например, при рассмотрении перехода от ко­ординатного способа задания движения к векторному .

Положим, что движение точки задано в виде уравнений (2.3). Имея в виду, что

можно записать

А это и есть уравнение вида (2.2).

Задача 2.1. Найти уравнение движения и траекторию средней точки шатуна, а также уравнение движения ползуна кривошипно-ползунного механизма (рис. 2.4), если ; .

Решение. Положение точки определя­ется двумя координатами и . Из рис. 2.4 видно, что

, .

Тогда из и :

; ; .

Подставляя значения , и , получаем уравнения движения точки :

; .

Чтобы найти уравнение траектории точки в явной форме, надо исключить из уравнений движения время . С этой целью проведем необходимые преобразования в полученных выше уравнениях движения:

; .

Возводя в квадрат и складывая левые и правые части этих уравнений, получим уравнение траектории в виде

.

Следовательно, траектория точки - эллипс.

Ползун движется прямолинейно. Координату , определяющую положение точки, можно записать в виде

.

Скорость и ускорение

Скорость точки

В предыдущей статье движение тела или точки определено, как изменение положения в пространстве с течением времени. Для того чтобы более полно охарактеризовать качественные и количественные стороны движения введены понятия скорости и ускорения.

Скорость – это кинематическая мера движения точки, характеризующая быстроту изменения ее положения в пространстве.
Скорость является векторной величиной, т. е. она характеризуется не только модулем (скалярной составляющей), но и направлением в пространстве.

Как известно из физики, при равномерном движении скорость может быть определена длиной пути, пройденного за единицу времени: v = s/t = const (предполагается, что начало отсчета пути и времени совпадают).
При прямолинейном движении скорость постоянна и по модулю, и по направлению, а ее вектор совпадает с траекторией.

Единица скорости в системе СИ определяется соотношением длина/время, т. е. м/с .

Очевидно, что при криволинейном движении скорость точки будет меняться по направлению.
Для того, чтобы установить направление вектора скорости в каждый момент времени при криволинейном движении, разобьем траекторию на бесконечно малые участки пути, которые можно считать (вследствие их малости) прямолинейными. Тогда на каждом участке условная скорость v п такого прямолинейного движения будет направлена по хорде, а хорда, в свою очередь, при бесконечном уменьшении длины дуги (Δs стремится к нулю), будет совпадать с касательной к этой дуге.
Из этого следует, что при криволинейном движении вектор скорости в каждый момент времени совпадает с касательной к траектории (рис. 1а) . Прямолинейное движение можно представить, как частный случай криволинейного движения по дуге, радиус которой стремится к бесконечности (траектория совпадает с касательной) .

При неравномерном движении точки модуль ее скорости с течением времени меняется.
Представим себе точку, движение которой задано естественным способом уравнением s = f(t) .

Если за небольшой промежуток времени Δt точка прошла путь Δs , то ее средняя скорость равна:

vср = Δs/Δt .

Средняя скорость не дает представления об истинной скорости в каждый данный момент времени (истинную скорость иначе называют мгновенной). Очевидно, что чем меньше промежуток времени, за который определяется средняя скорость, тем ближе ее значение будет к мгновенной скорости.

Истинная (мгновенная) скорость есть предел, к которому стремится средняя скорость при Δt, стремящемся к нулю :

v = lim v ср при t→0 или v = lim (Δs/Δt) = ds/dt .

Таким образом, числовое значение истинной скорости равно v = ds/dt .
Истинная (мгновенная) скорость при любом движении точки равна первой производной координаты (т. е. расстояния от начала отсчета перемещения) по времени.

При Δt стремящемся к нулю, Δs тоже стремится к нулю, и, как мы уже выяснили, вектор скорости будет направлен по касательной (т. е. совпадает с вектором истинной скорости v ). Из этого следует, что предел вектора условной скорости v п , равный пределу отношения вектора перемещения точки к бесконечно малому промежутку времени, равен вектору истинной скорости точки.

Рис.1

Рассмотрим пример. Если диск, не вращаясь, может скользить вдоль неподвижной в данной системе отсчета оси (рис.1,а ), то в данной системе отсчета он, очевидно, обладает только одной степенью свободы - положение диска однозначно определяется, скажем, координатой x его центра, отсчитываемой вдоль оси. Но если диск, кроме того, может еще и вращаться (рис.1,б ), то он приобретает еще одну степень свободы - к координате x добавляется угол поворота φ диска вокруг оси. Если ось с диском зажата в рамке, которая может поворачиваться вокруг вертикальной оси (рис.1,в ), то число степеней свободы становится равным трем – к x и φ добавляется угол поворота рамки ϕ .

Свободная материальная точка в пространстве имеет три степени свободы: например декартовы координаты x, y и z . Координаты точки могут определяться также в цилиндрической (r, 𝜑, z ) и сферической (r, 𝜑, 𝜙 ) системах отсчета, но число параметров, однозначно определяющих положение точки в пространстве всегда три.

Материальная точка на плоскости имеет две степени свободы. Если в плоскости выбрать систему координат xОy, то координаты x и y определяют положение точки на плоскости, акоордината z тождественно равна нулю.

Свободная материальная точка на поверхности любого вида имеет две степени свободы. Например: положение точки на поверхности Земли определяется двумя параметрами: широтой и долготой.

Материальная точка на кривой любого вида имеет одну степень свободы. Параметром, определяющим положение точки на кривой, может быть, например, расстояние вдоль кривой от начала отсчета.

Рассмотрим две материальные точки в пространстве, соединенные жестким стержнем длины l (рис.2). Положение каждой точки определяется тремя параметрами, но на них наложена связь.

Рис.2

Уравнение l 2 =(x 2 -x 1) 2 +(y 2 -y 1) 2 +(z 2 -z 1) 2 является уравнением связи. Из этого уравнения любая одна координата может быть выражена через остальные пять координат (пять независимых параметров). Поэтому эти две точки имеют (2∙3-1=5) пять степеней свободы.

Рассмотрим три материальные точки в пространстве, не лежащие на одной прямой, соединенные тремя жесткими стержнями. Число степеней свободы этих точек равно (3∙3-3=6) шести.

Свободное твёрдое тело в общем случае имеет 6 степеней свободы. Действительно, положение тела в пространстве относительно какой-либо системы отсчета, определяется заданием трех его точек, не лежащие на одной прямой, и расстояния между точками в твердом теле остаются неизменными при любых его движениях. Согласно выше сказанному, число степеней свободы должно быть равно шести.

Поступательное движение

В кинематике, как и в статистике, будем рассматривать все твердые тела как абсолютно твердые.

Абсолютно твердым телом называется материальное тело, геометрическая форма которого и размеры не изменяются ни при каких механических воздействиях со стороны других тел, а расстояние между любыми двумя его точками остается постоянным.

Кинематика твердого тела, также как и динамика твердого тела, является одним из наиболее трудных разделов курса теоретической механики.

Задачи кинематики твердого тела распадаются на две части:

1) задание движения и определение кинематических характеристик движения тела в целом;

2) определение кинематических характеристик движения отдельных точек тела.

Существует пять видов движения твердого тела:

1) поступательное движение;

2) вращение вокруг неподвижной оси;

3) плоское движение;

4) вращение вокруг неподвижной точки;

5) свободное движение.

Первые два называются простейшими движениями твердого тела.

Начнем с рассмотрения поступательного движения твердого тела.

Поступательным называется такое движение твердого тела, при котором любая прямая, проведенная в этом теле, перемещается, оставаясь параллельной своему начальному направлению.

Поступательное движение не следует смешивать с прямолиней­ным. При поступательном движении тела траектории его точек мо­гут быть любыми кривыми линиями. Приведем примеры.

1. Кузов автомобиля на прямом горизонтальном участке дороги движется поступательно. При этом траектории его точек будут пря­мыми линиями.

2. Спарник АВ (рис.3) при вращении кривошипов O 1 A и O 2 B также движется поступательно (любая проведенная в нем прямая остается параллельной ее начальному направлению). Точки спарника движутся при этом по окружностям.

Рис.3

Поступательно движутся педали велосипеда относительно его рамы во время движения, поршни в цилиндрах двигателя внутреннего сгорания относительно цилиндров, кабины колеса обозрения в парках (рис.4) относительно Земли.

Рис.4

Свойства поступательного движения определяются следующей теоремой: при поступательном движении все точки тела описывают одинаковые (при наложении совпадающие) траектории и имеют в каждый момент времени одинаковые по модулю и направлению ско­рости и ускорения.

Для доказательства рассмотрим твердое тело, совершающее по­ступательное движение относительно системы отсчета Oxyz . Возьмем в теле две произвольные точки А и В , положения которых в момент времени t определяются радиусами-векторами и (рис.5).

Рис.5

Проведем вектор , соединяющий эти точки.

При этом длина АВ постоянна, как расстояние между точками твердого тела, а направление АВ остается неизменным, так как тело движется поступательно. Таким образом, вектор АВ во все время движения тела остается постоянным (AB =const). Вследствие этого, траектория точки В получается из траектории точки А параллельным смещением всех ее точек на постоянный вектор . Следова­тельно, траектории точек А и В будут действительно одинаковыми (при наложении совпадающими) кривыми.

Для нахождения скоростей точек А и В продифференцируем обе части равенства по времени. Получим

Но производная от постоянного вектора АВ равна нулю. Про­изводные же от векторов и по времени дают скорости точек А и В . В результате находим, что

т.е. что скорости точек А и В тела в любой момент времени оди­наковы и по модулю, и по направлению. Беря от обеих частей полу­ченного равенства производные по времени:

Следовательно, ускорения точек А и В тела в любой момент времени тоже одинаковы по модулю и направлению.

Так как точки А и В были выбраны произвольно, то из найден­ных результатов следует, что у всех точек тела их траектории, а также скорости и ускоре­ния в любой момент времени будут одинаковы. Таким образом, теорема доказана.

Из теоремы следует, что поступательное движение твердого тела определяется движением какой-нибудь одной из его точки. Следовательно, изучение поступательного движения тела сводится к задаче кинематике точки, нами уже рассмотренной.

При поступательном движении общую для всех точек тела скорость называют скоростью поступательного движения тела, а ускорение - ускорением поступательного движения тела. Векторы и можно изображать приложенными в любой точке тела.

Заметим, что понятие о скорости и ускорении тела имеют смысл только при поступательном движении. Во всех остальных случаях точки тела, как мы увидим, движутся с разными скоростями и ускорениями, и термины <<скорость тела>> или <<ускорение тела>> для этих движений теряют смысл.

Рис.6

За время ∆t тело, двигаясь из точки А в точку В, совершает перемещение , равное хорде АВ, и проходит путь, равный длине дуги l .

Радиус-вектор поворачивается на угол ∆φ. Угол выражают в радианах.

Скорость движения тела по траектории (окружности) направлена по касательной к траектории. Она называется линейной скоростью. Модуль линейной скорости равен отношению длины дуги окружности l к промежутку времени ∆t, за который эта дуга пройдена:

Скалярная физическая величина, численно равная отношению угла поворота радиуса-вектора к промежутку времени, за который этот поворот произошел, называется угловой скоростью:

В СИ единицей угловой скорости является радиан в секунду .

При равномерном движении по окружности угловая скорость и модуль линейной скорости - величины постоянные: ω=const; v=const.

Положение тела можно определить, если известен модуль радиуса- вектора и угол φ, который он составляет с осью Ох (угловая координата). Если в начальный момент времени t 0 =0 угловая координата равна φ 0 , а в момент времени t она равна φ, то угол поворота ∆φ радиуса-вектора за время ∆t=t-t 0 равен ∆φ=φ-φ 0 . Тогда из последней формулы можно получить кинематическое уравнение движения материальной точки по окружности:

Оно позволяет определить положение тела в любой момент времени t.

Учитывая, что , получаем:

Формула связи между линейнойи угловой скоростью.

Промежуток времени Т, в течение которого тело совершает один полный оборот, называется периодом вращения:

Где N – число оборотов, совершенных телом за время Δt.

За время ∆t=Т тело проходит путь l =2πR. Следовательно,

При ∆t→0 угол ∆φ→0 и, следовательно, β→90°. Перпендикуляром к касательной к окружности является радиус. Следовательно, направлено по радиусу к центру и поэтому называется центростремительным ускорением:

Модуль , направление непрерывно изменяется (рис. 8). Поэтому данное движение не является равноускоренным.

Рис.8

Рис.9

Тогда поло­жение тела в любой момент времени одно­значно определится взятым с соответствую­щим знаком углом φ между этими полуплоскостями, который назо­вем углом поворота тела. Будем считать угол φ положительным, если он отложен от неподвижной плоскости в направлении против хода часовой стрелки (для наблюдателя, смотрящего с положительного конца оси Az), и отрицательным, если по ходу часовой стрелки. Измерять угол φ будем всегда в радианах. Чтобы знать положение тела в любой момент времени, надо знать зависимость угла φ от времени t , т.е.

Уравнение выражает закон вращательного движения твердого тела вокруг неподвижной оси.

При вращательном движении абсолютно твердого тела вокруг неподвижной оси углы поворота радиуса-вектора различных точек тела одинаковы.

Основными кинематическими характеристиками вращательного движения твердого тела являются его угловая скорость ω и угловое ускорение ε.

Если за промежуток времени ∆t=t 1 -t тело совершает поворот на угол ∆φ=φ 1 -φ, то численно средней угловой скоростью тела за этот промежуток времени будет . В пределе при ∆t→0 найдем, что

Таким образом, числовое значение угловой скорости тела в данный момент времени равно первой производной от угла поворота по времени. Знак ω определяет направление вращения тела. Легко видеть, что когда вращение происходит против хода часовой стрелки, ω>0, а когда по ходу часовой стрелки, то ω<0.

Размерность угловой скорости 1/Т (т.е. 1/время); в качестве единицы измерения обычно применяют рад/с или, что тоже, 1/с (с -1), так как радиан - величина безразмер­ная.

Угловую скорость тела можно изобразить в виде вектора , модуль которого равен | | и который направлен вдоль оси вращения тела в ту сторону, откуда вращение видно происходящим против хода часовой стрелки (рис.10). Такой вектор определяет сразу и модуль угло­вой скорости, и ось вращения, и направ­ление вращения вокруг этой оси.

Рис.10

Угол поворота и угловая скорость характеризуют движение всего абсолютно твердого тела в целом. Линейная скорость какой-либо точки абсолютно твердого тела пропорциональна расстоянию точки от оси вращения:

При равномерном вращении абсолютно твердого тела углы поворота тела за любые равные промежутки времени одинаковы, тангенциальные ускорения у различных точек тела отсутствуют, а нормальное ускорение точки тела зависит от ее расстояния до оси вращения:

Вектор направлен по радиусу траектории точки к оси вращения.

Угловое ускорение характеризует изменение с те­чением времени угловой скорости тела. Если за промежуток вре­мени ∆t=t 1 -t угловая скорость тела изменяется на величину ∆ω=ω 1 -ω, то числовое значение среднего углового ускорения тела за этот промежуток времени будет . В пределе при ∆t→0 найдем,

Таким образом, числовое значение углового ускорения, тела в данный момент времени равно первой производной от угловой скорости или второй производной от угла поворота тела по времени.

Размерность углового ускорения 1/T 2 (1/время 2); в качестве единицы измерения обычно применяется рад/с 2 или, что то же, 1/с 2 (с- 2).

Если модуль угловой скорости со временем возрастает, вращение тела называется ускоренным, а если убывает, - замедленным. Легко видеть, что вращение будет ускоренным, когда величины ω и εимеют одинаковые знаки, и замедленным, - когда разные.

Угловое ускорение тела (по аналогии с угловой скоростью) можно также изобразить в виде вектора ε, направленного вдоль оси вращения. При этом

Направление ε совпадает с направлением ω, когда тело вращается ускоренно и (рис.10,а), противоположно ω при замедленном вращении (рис.10,б).

Рис.11 Рис. 12

2. Ускорения точек тела. Для нахождения ускорения точки М воспользуемся формулами

В нашем случае ρ=h. Подставляя значение v в выражения a τ и a n , получим:

или окончательно:

Касательная составляющая ускорения a τ направлена по каса­тельной к траектории (в сторону движения при ускоренном вра­щении тела и в обратную сторону при, замедленном); нормальная составляющая a n всегда направлена по радиусу МС к оси вращения (рис.12). Полное ускорение точки М будет

Отклонение вектора полного ускорения от радиуса описываемой точкой окружности определяется углом μ, который вычисляется по формуле

Подставляя сюда зна­чения a τ и a n , получаем

Так как ω и ε имеют в данный момент времени для всех точек тела одно и то же значение, то ускорения всех точек вращающегося твердого тела пропорциональ­ны их расстояниям от оси вращения и образуют в данный момент времени один и тот же угол μ с радиусами описываемых ими окруж­ностей. Поле ускорений точек вращающегося твердого тела имеет вид, показанный на рис.14.

Рис.13 Рис.14

3. Векторы скорости и ускорения точек тела. Чтобы найти выражения непосредственно для векторов v и a, проведем из произвольной точки О оси АВ радиус-вектор точки М (рис. 13). Тогда h=r∙sinα и по формуле

Таким образом, мо

Специальные слои направляющих позволяют задавать траектории движения для анимируемых экземпляров, групп или текстовых блоков. С одним слоем направляющей можно связать несколько слоев объектов, чтобы все объекты двигались по одной траектории. Связанный со слоем направляющей обычный слой становится ведомым.

Рис. 4.12 . Привязка объекта к траектории

Рассмотрим последовательность действий при создании анимации с движением объекта по заданной траектории:

  1. Создадим анимацию движения одним из способов, рассмотренных ранее.
  2. При установке флажка Orient to Path (Ориентация на траекторию) базовая линия группы анимируемых объектов будет двигаться параллельно заданной траектории. Для фиксации на траектории регистрационной точки объекта устанавливается флажок Snap (Привязка).
  3. Выполняем команду Insert › Motion Guide (Вставка › Траектория движения). Flash создаст над выделенным слоем новый слой со значком направляющей слева от имени.
  4. Используем любой инструмент для рисования, чтобы изобразить желаемую траекторию. В первом кадре зафиксируем объект в начальной точке линии, а в последнем кадре - в конце линии, перемещая объект с помощью мыши за его регистрационную точку.
  5. Чтобы сделать траекторию невидимой, следует щелкнуть на пересечении строки направляющего слоя и отмеченного значком глаза столбца.


Рис. 4.13 . Движение по заданной траектории


Рис. 4.14 . Окно Layer Properties

Чтобы связать слой с существующим слоем направляющей, можно выполнить одно из следующих действий:

  • Переместить слой с объектами под слой с направляющей. Все анимированные объекты на нем автоматически привязываются к траектории, на что указывает сдвиг названия слоя вправо.
  • Создать новый слой под слоем направляющей. Объекты, размещенные на этом слое, к которым будет применена анимация методом расчета кадров (tweened) , автоматически привязываются к траектории.
  • Выделить слой под слоем с направляющей и выполнить команду Modify › Layer Guided (Управляемый) для типа слоя в диалоговом окне Layer Properties (Свойства слоя).
  • Щелкнуть на слое при нажатой клавише ALT .

Чтобы разорвать связь слоя со слоем направляющей, выполните одно из следующих действий:

  • Выделите слой, связь которого надо разорвать, и перетащите его выше слоя направляющей.
  • Выполните команду Modify › Layer (Изменить › Слой) с выбором значения Normal (Обычный) для типа слоя в окне Layer Properties (Свойства слоя).
  • Щелкните на слое при нажатой клавише ALT .

Траектория (от позднелатинского trajectories – относящийся к перемещению) – это линия, по которой движется тело (материальная точка). Траектория движения может быть прямой (тело перемещается в одном направлении) и криволинейной, то есть механическое движение может быть прямолинейным и криволинейным.

Траектория прямолинейного движения в данной системе координат – это прямая линия. Например, можно считать, что траектория движения автомобиля по ровной дороге без поворотов является прямолинейной.

Криволинейное движение – это движение тел по окружности, эллипсу, параболе или гиперболе. Пример криволинейного движения – движение точки на колесе движущегося автомобиля или движение автомобиля в повороте.

Движение может быть сложным. Например, траектория движения тела в начале пути может быть прямолинейной, затем криволинейной. Например, автомобиль в начале пути движется по прямой дороге, а затем дорога начинает «петлять» и автомобиль начинает криволинейное движение.

Путь

Путь – это длина траектории. Путь является скалярной величиной и в международной системе единиц СИ измеряется в метрах (м). Расчёт пути выполняется во многих задачах по физике. Некоторые примеры будут рассмотрены далее в этом учебнике.

Вектор перемещения

Вектор перемещения (или просто перемещение ) – это направленный отрезок прямой, соединяющий начальное положение тела с его последующим положением (рис. 1.1). Перемещение – величина векторная. Вектор перемещения направлен от начальной точки движения к конечной.

Модуль вектора перемещения (то есть длина отрезка, который соединяет начальную и конечную точки движения) может быть равен пройденному пути или быть меньше пройденного пути. Но никогда модуль вектора перемещения не может быть больше пройденного пути.

Модуль вектора перемещения равен пройденному пути, когда путь совпадает с траекторией (см. разделы и ), например, если из точки А в точку Б автомобиль перемещается по прямой дороге. Модуль вектора перемещения меньше пройденного пути, когда материальная точка движется по криволинейной траектории (рис. 1.1).

Рис. 1.1. Вектор перемещения и пройденный путь.

На рис. 1.1:

Ещё пример. Если автомобиль проедет по кругу один раз, то получится, что точка начала движения совпадёт с точкой конца движения и тогда вектор перемещения будет равен нулю, а пройденный путь будет равен длине окружности. Таким образом, путь и перемещение – это два разных понятия .

Правило сложения векторов

Векторы перемещений складываются геометрически по правилу сложения векторов (правило треугольника или правило параллелограмма, см. рис. 1.2).

Рис. 1.2. Сложение векторов перемещений.

На рис 1.2 показаны правила сложения векторов S1 и S2:

а) Сложение по правилу треугольника
б) Сложение по правилу параллелограмма

Проекции вектора перемещения

При решении задач по физике часто используют проекции вектора перемещения на координатные оси. Проекции вектора перемещения на координатные оси могут быть выражены через разности координат его конца и начала. Например, если материальная точка переместилась из точки А в точку В, то при этом вектор перемещения (см.рис. 1.3).

Выберем ось ОХ так, чтобы вектор лежал с этой осью в одной плоскости. Опустим перпендикуляры из точек А и В (из начальной и конечной точек вектора перемещения) до пересечения с осью ОХ. Таким образом мы получим проекции точек А и В на ось Х. Обозначим проекции точек А и В соответственно А x и В x . Длина отрезка А x В x на оси ОХ – это и есть проекция вектора перемещения на ось ОХ, то есть

S x = A x B x

ВАЖНО!
Напоминаю для тех, кто не очень хорошо знает математику: не путайте вектор с проекцией вектора на какую-либо ось (например, S x). Вектор всегда обозначается буквой или несколькими буквами, над которыми находится стрелка. В некоторых электронных документах стрелку не ставят, так как это может вызвать затруднения при создании электронного документа. В таких случаях ориентируйтесь на содержание статьи, где рядом с буквой может быть написано слово «вектор» или каким-либо другим способом вам указывают на то, что это именно вектор, а не просто отрезок.

Рис. 1.3. Проекция вектора перемещения.

Проекция вектора перемещения на ось ОХ равна разности координат конца и начала вектора, то есть

S x = x – x 0

Аналогично определяются и записываются проекции вектора перемещения на оси OY и OZ:

S y = y – y 0 S z = z – z 0

Здесь x 0 , y 0 , z 0 — начальные координаты, или координаты начального положения тела (материальной точки); x, y, z — конечные координаты, или координаты последующего положения тела (материальной точки).

Проекция вектора перемещения считается положительной, если направление вектора и направление координатной оси совпадают (как на рис 1.3). Если направление вектора и направление координатной оси не совпадают (противоположны), то проекция вектора отрицательна (рис. 1.4).

Если вектор перемещения параллелен оси, то модуль его проекции равен модулю самого Вектора. Если вектор перемещения перпендикулярен оси, то модуль его проекции равен нулю (рис. 1.4).

Рис. 1.4. Модули проекции вектора перемещения.

Разность между последующим и начальным значениями какой-нибудь величины называется изменением этой величины. То есть проекция вектора перемещения на координатную ось равна изменению соответствующей координаты. Например, для случая, когда тело перемещается перпендикулярно оси Х (рис. 1.4) получается, что относительно оси Х тело НЕ ПЕРЕМЕЩАЕТСЯ. То есть перемещение тела по оси Х равно нулю.

Рассмотрим пример движения тела на плоскости. Начальное положение тела – точка А с координатами х 0 и у 0 , то есть А(х 0 , у 0). Конечное положение тела – точка В с координатами х и у, то есть В(х, у). Найдём модуль перемещения тела.

Из точек А и В опустим перпендикуляры на оси координат ОХ и OY (рис. 1.5).

Рис. 1.5. Движение тела на плоскости.

Определим проекции вектора перемещения на осях ОХ и OY:

S x = x – x 0 S y = y – y 0

На рис. 1.5 видно, что треугольник АВС – прямоугольный. Из этого следует, что при решении задачи может использоваться теорема Пифагора , с помощью которой можно найти модуль вектора перемещения, так как

АС = s x CB = s y

По теореме Пифагора

S 2 = S x 2 + S y 2

Откуда можно найти модуль вектора перемещения, то есть длину пути тела из точки А в точку В:

Ну и напоследок предлагаю вам закрепить полученные знания и рассчитать несколько примеров на ваше усмотрение. Для этого введите какие-либо цифры в поля координат и нажмите кнопку РАССЧИТАТЬ. Ваш браузер должен поддерживать выполнение сценариев (скриптов) JavaScript и выполнение сценариев должно быть разрешено в настройках вашего браузера, иначе расчет не будет выполнен. В вещественных числах целая и дробная части должны разделяться точкой, например, 10.5.