Как проверить параметры антенны бс 2. И.М

ВЧ-антенны бегущей волны типа РГ, РГД, БС, БС-2, ЗБС-2 громоздкие, дорогостоящие сооружения, занимающие большие зе­мельные площади. На крупных стационарных радио­центрах эти антенны стоят на ответственных связях и должны окупать затраты на их изготовление. Устойчивость и надежность ДKМ линий радиосвязи с ионосферным распространением радио­волн в существенной мере определяется и зависит как от типов применяемых антенн, так и от их состояния на данный момент времени. К общим недостаткам ромбических антенн и антенн типа БС мож­но отнести наличие мачт высотой в несколько десятков метров с разветвленным такелажем. Этот недостаток отмечается по при­чинам:

Ограничения возможности восстановления антенны силами центра при выходе из строя хотя бы одной из ее мачт;

а) вид сверху

б) вид сбоку

Рис. 7.42. Антенна БС-21/8.180/4,4.17

Ограничения возможности осмотра полотна антенны, проведе­ния регламентных и профилактических мероприятий (спуск по­лотна ведет к потере связей на данном рабочем азимуте);

Удорожания и увеличения времени строительства и обслужи­вания антенн;

Ограничения возможности расстановки антенн на антенных полях.

К частным недостаткам антенн БС можно отнести наличие сопротивлений связи (резисторов), число которых может дости­гать нескольких сотен. Под воздействием грозовых разрядов ре­зисторы могут сгорать. При этом антенна теряет свои первона­чальные свойства, ухудшаются ее характеристики .

Сопоставление основных показателей антенн ти­па ОБ, РГ и БС-2 (η – КПД антенны, и D – КНД антенны)позволяет сделать несколько важных заключе­ний. Сравним антенны , и ЗБС-2 . Из рис. 7.43 следует, что КПД ромбической антенны много больше КПД антенн типа ОБ и БС, т.е. ее целесообразно использовать как передающую антенну. КПД приемных антенн ДKМ диапазона не является для них определяющим показателем. Здесь на первый план из электрических параметров выдвигается значение КНД, связанного с направлением основного излучения антенны.



Рис. 7.43. К сравнительной оценке КПД антенн различных типов:

1 – ОБ, 2 - РГД; 3 - ЗБС-2

Из анализа рис. 7.43 следует, что по электри­ческим показателям антенны типа ОБ-2 и БС-2 примерно равно­ценны, если не считать более низкого КПД антенны БС-2 в длинноволновой области ДKМ диапазона. Ромбиче­ские антенны, как приемные антенны, не выдерживают конкуренции с антеннами типа ОБ-2 и БС-2 по диапазонности и направленности.

Сопоставим типовые антенны ЗБС-2 и (см. табл. 7.21) . При этом огра­ничимся сравнением только основных конструктивных параметров. Анализ показывает, что по конструктивным показателям, антенны типа ОБ-2 существенно превосходят антенны типа БС-2.

На рис. 7.44 приведены характеристики КНД названных выше антенн, а также антенны типа ОБ-2 и нескольких типов антенн РГД.

Рис. 7.44. К сравнительной оценке КНД антенн различных типов:

1 – , 2 – , 3, 4 и 5 – антенны РГД, 6 – ЗБС-2

Таблица 7.21

Конструктивные характеристики антенн 3БС-2 и ОБ-2

Антенна типа ОБ-2, в частности, с по­мощью изоляторов может быть установлена на такелаже антенны типа БС-2 (рис. 7.45) с весьма незначительными затратами сил и средств. При этом антенны могут работать независимо друг от друга, являясь взаимным резервом. Антенны имеют линейные взаимноортогональные поляризации, поэтому провода полотна и такелажа антенны БС почти не влияют на характеристики ан­тенны ОБ. Антенны позволяют осуществить сдвоенный прием радиосигналов методом поляризационного разнесения.

Антенны типа ОБ имеют относительно широкий лепесток диаграммы направленности, что снижает их помехоустойчивость. Этого недостатка лишена антенна типа ОБ-Е.


Рис 7.45. Схема размещения антенны типа ОБ-2 на такелаже

антенны типа БС-2

Антенна типа ОБ-Е

При разработке антенна ОБ-Е предполагалась для использования на приемных радиоцентрах магистральной радиосвязи взамен антенн типа БС-2, 2 БС-2, 3 БС-2, лучших по эффективности из имеющихся, но громоздких, дорогих, ненадежных в эксплуатации и трудоемких в обслуживании. Антенна ОБ-Е обладает высоким коэффициентом эффективность/стоимость С .

Схема антенны ОБ-Е приведена на рис. 7.46. Она имеет маркировку ОБ-Е , где L – длина полотна антенны; h – высота подвеса полотна антенны. На рис. 7.46 обозначено: 1 – поверхность «земли»; 2, 8 – проводники противовесов; 3 – источник ЭДС (радиопередатчик, ГСС); 5 – проводник с бегущей волной; 7 – резистор – нагрузка.

Антенна получила маркировку ОБ-Е (однопроводная, бегущей волны), где литера Е указывает на присутствие еще одной волны на проводнике, похожей по структуре на волну Е 0 в круглом вол­новоде, если смотреть в торец проводника.

Антенна ОБ-Е имела длину L = 300 м.; эквивалентный диаметр проводника с бегущей волной d экв = 280 мм.; наминал нагрузочного резистора R н = 200 Ом; высота подвеса h = 3 м. Диапазон рабочих частот антенны ОБ-Е составляет Δf = 3 ÷ 30 МГц.

Рис. 7.46. Антенна ОБ-Е

Исследования выявили принципиальные расхождения в принципах работы антенн ОБ и ОБ-Е. Они позволяют полагать, что в околопроводном пространстве антенны ОБ-Е происходит перераспределение энергии излучения, что привело к созданию новой, простой по конструкции и очень компактной в поперечнике антенне для магистральных ДКМ радиосвязей, представляющей собой «рупорную антенну без видимых стенок».

Результаты расчетов ДН в горизонтальной и вертикальной плоскостях и экспериментальных исследований, полученных с помощью облета на одинаковых частотах, приведены на рис 7.47 и рис.7.48. Экспериментальные точки показаны крестиками.

Из анализа диаграмм направленности следует, что антенна ОБ-Е обладает высокой помехоустойчивостью.

Антенный комплекс ОБ-Е

Для приема сигналов, приходящих под разными углами в угломестной плоскости, создан антенный комплекс ОБ-Е . Он включает в себя три антенны ОБ-Е различной длины L = 60; 120; 240 м, которые ориентированы на местности в одном общем азимуте.

Рис. 7.47. Расчётные и экспериментальные диаграммы направленности антенны ОБ-Е в горизонтальной плоскости

Рис. 7.48. Расчётные и экспериментальные диаграммы направленности антенны ОБ-Е в вертикальной плоскости

Комплекс рассчитан на прием радиоволн в диапазоне 10 м £ λ £ 100 м, (3 ÷ 30 МГц) с ионосферным характером распространения на трассах большой протяженности R > 1000 км. Рекомендации по выбору приёмных антенн приведены в табл. 7.22. Параметры ионосферы не­стабильны во времени и неоднородны в пространстве, поэтому в точке приема радиоволн, наблюдаются нестабильность углов q пр по отношению к горизонту и колебания уровней поля.

  • 5.4. Помехи приему сигналов
  • 5.5. Основы теории информации
  • 5.5.2. Информационные характеристики канала связи
  • 5.6. Основы теории кодирования
  • 5.6.1. Основные понятия и определения
  • 5.6.2. Классификация кодов
  • 5.6.3. Основные задачи теории кодирования
  • 5.6.4. Помехоустойчивые блочные систематические коды
  • 5.7. Основы сетей электросвязи
  • Глава 6. Авиационная электросвязь
  • 6.1. Классификация и предназначение авиационной электросвязи
  • 6.2. Современное состояние и перспективы развития авиационной электросвязи в соответствии с системой cns/atm
  • 6.2.1. Существующая система авиационной электросвязи
  • 6.2.2. Перспективная концепция связи
  • 6.3. Сети авиационной фиксированной электросвязи
  • 6.4. Сети авиационной воздушной электросвязи
  • 6.5. Аэронавигационная телекоммуникационная сеть atn
  • 6.6. Протоколы информационного обмена авиационной сети электросвязи (atn)
  • 6.6.1. Анализ протоколов бортовой подсети
  • 6.6.2. Протоколы подсети «воздух-земля»
  • Существующие режимы линии передачи данных мв подсети acars, vdl-2, vdl-2 и vdl-4 рассмотрены выше.
  • 6.6.3. Анализ протоколов подсети «земля-земля»
  • 6.6.4. Возможность использования сети на основе протоколов х.25
  • 6.6.5. Возможности использования технологии FrameRelay
  • 6.6. Авиационное радиовещание
  • Глава 7. Средства авиационной электросвязи
  • 7.1. Классификация объектов и средств авиационной электросвязи
  • 7.2. Средства радиосвязи овч диапазона
  • 7.2.1. Радиосредства серии «Фазан-19»
  • Основные технические характеристики наземных средств радиосвязи овч-диапазона
  • 7.2.3. Радиооборудование серии «r&s Series 200»
  • Основные технические характеристики радиосредств Фазан-19
  • Технические характеристики многоканальных овч-приемникa r&s eu230a, увч-приемникa r&s ed230a приведены в табл. 7.3.
  • Технические характеристики многоканальных
  • Технические характеристики овч передатчикa r&s su250a, увч передатчикa r&s sd230a
  • 7.2.2. Радиосредства серии «Серия 2000»
  • Основные этх радиопередатчика Серии 2000
  • Основные этх радиоприёмника Серии 2000
  • 7.2.3. Автономные радиоретрансляторы овч-диапазона
  • Многофункциональный автономный радиоретранслятор "габик"
  • Автономный радиоретранслятор «анр-1»
  • Основные этх аррт «анр-1»
  • 7.2.4. Автоматизированные приемо-передающие центры
  • Автоматизированный приемо-передающий центр на основе радиосредств Фазан-19
  • Автоматизированный приемо-передающий центр на основе радиосредств серии 2000
  • 7.2.4. Алларатура и оборудование высокочастотных трактов радиоцентров овч-диапазона
  • Основные технические характеристики шау «Вятка»
  • Электрические характеристики if-1Av-125-r/2
  • 7.5. Антенны, антенные комплексы, антенные поля
  • Технические характеристики антенного устройства анк-100-150
  • Основные технические характеристики антенн овч-диапазона
  • Основные технические характеристики антенны оа 2004v
  • Основные технические характеристики антенны оа 2001v
  • 7.2.6. Бортовые радиостанции овч-диапазона
  • Основные технические характеристики радиостанций «Юрок» и «Бриз»
  • 5. Выключатель аварийного приема;6. Потенциометр начальной
  • 8. Переключатель частоты, мГц.)
  • 7.3. Средства авиационной электросвязи вч-диапазона
  • 7.3.1. Радиооборудование вч-диапазона серии «Пирс»
  • Основные технические характеристики наземных средств радиосвязи вч-диапазона
  • Основные этх радиостанции серии «Пирс»
  • Основные этх радиопередатчиков серии «Пирс»
  • Основные этх приемопередатчиков серии «Пирс»
  • 7.3.3. Алларатура и оборудование высокочастотных трактов радиоцентров вч-диапазона
  • Технические характеристики дук 16х16
  • Технические характеристики шау-21
  • 7.3.4. Антенны, антенные комплексы, антенные поля вч-диапазона
  • Характеристики передающих антенн ргд и лпа
  • Конструктивные характеристики антенн 3бс-2 и об-2
  • Рекомендации по выбору приёмных антенн
  • 7.3.5. Бортовые радиостанции вч-диапазона
  • Основные технические данные
  • 7.4. Средства авиационной спутниковой связи Спутниковые системы связи
  • Конструктивные характеристики антенн 3бс-2 и об-2

    Антенна типа ОБ-2, в частности, с по­мощью изоляторов может быть установлена на такелаже антенны типа БС-2 (рис. 7.45) с весьма незначительными затратами сил и средств. При этом антенны могут работать независимо друг от друга, являясь взаимным резервом. Антенны имеют линейные взаимноортогональные поляризации, поэтому провода полотна и такелажа антенны БС почти не влияют на характеристики ан­тенны ОБ. Антенны позволяют осуществить сдвоенный прием радиосигналов методом поляризационного разнесения.

    Антенны типа ОБ имеют относительно широкий лепесток диаграммы направленности, что снижает их помехоустойчивость. Этого недостатка лишена антенна типа ОБ-Е.

    Рис 7.45. Схема размещения антенны типа ОБ-2 на такелаже

    антенны типа БС-2

    Антенна типа ОБ-Е

    При разработке антенна ОБ-Е предполагалась для использования на приемных радиоцентрах магистральной радиосвязи взамен антенн типа БС-2, 2 БС-2, 3 БС-2, лучших по эффективности из имеющихся, но громоздких, дорогих, ненадежных в эксплуатации и трудоемких в обслуживании.Антенна ОБ-Е обладает высоким коэффициентом эффективность/стоимость С .

    Схема антенны ОБ-Е приведена на рис. 7.46. Она имеет маркировку ОБ-Е , гдеL – длина полотна антенны;h – высота подвеса полотна антенны. На рис. 7.46 обозначено: 1 – поверхность «земли»; 2, 8 – проводники противовесов; 3–источник ЭДС (радиопередатчик, ГСС); 5 – проводник с бегущей волной; 7 – резистор – нагрузка.

    Антенна получила маркировку ОБ-Е (однопроводная, бегущей волны), где литера Е указывает на присутствие еще одной волны на проводнике, похожей по структуре на волну Е 0 в круглом вол­новоде, если смотреть в торец проводника.

    Антенна ОБ-Е имела длину L = 300 м.; эквивалентный диаметр проводника с бегущей волнойd экв = 280 мм.; наминал нагрузочного резистораR н = 200 Ом; высота подвесаh = 3 м.Диапазон рабочих частот антенны ОБ-Е составляет Δf = 3 ÷ 30 МГц.

    Рис. 7.46. Антенна ОБ-Е

    Исследования выявили принципиальные расхождения в принципах работы антенн ОБ и ОБ-Е. Они позволяют полагать, что в околопроводном пространстве антенны ОБ-Е происходит перераспределение энергии излучения, что привело к созданию новой, простой по конструкции и очень компактной в поперечнике антенне для магистральных ДКМ радиосвязей, представляющей собой «рупорную антенну без видимых стенок».

    Результаты расчетов ДН в горизонтальной и вертикальной плоскостях и экспериментальных исследований, полученных с помощью облета на одинаковых частотах, приведены на рис 7.47 и рис.7.48. Экспериментальные точки показаны крестиками.

    Рис. 7.47. Расчётные и экспериментальные диаграммы направленности антенны ОБ-Е в горизонтальной плоскости

    Рис. 7.48. Расчётные и экспериментальные диаграммы направленности антенны ОБ-Е в вертикальной плоскости

    Из анализа диаграмм направленности следует, что антенна ОБ-Е обладает высокой помехоустойчивостью.

    Антенный комплекс ОБ-Е

    Для приема сигналов, приходящих под разными углами в угломестной плоскости, создан антенный комплекс ОБ-Е . Он включает в себя три антенны ОБ-Е различной длины L = 60; 120; 240 м, которые ориентированы на местности в одном общем азимуте.

    Комплекс рассчитан на прием радиоволн в диапазоне 10 м  λ  100 м, (3 ÷ 30 МГц) с ионосферным характером распространения на трассах большой протяженности R > 1000 км. Рекомендации по выбору приёмных антенн приведены в табл. 7.22. Параметры ионосферы не­стабильны во времени и неоднородны в пространстве, поэтому в точке приема радиоволн, наблюдаются нестабильность углов  пр по отношению к горизонту и колебания уровней поля.

    Таблица 7.22

    "

    Сотовая связь с недавних пор так прочно вошла в нашу повседневную жизнь, что трудно представить современное общество без нее. Как и многие другие великие изобретения мобильный телефон сильно повлиял на нашу жизнь, и на многие ее сферы. Трудно сказать каким было бы будущее, если бы не этот удобный вид связи. Наверняка таким же, как и в фильме "Назад в Будущее-2", где есть летающие авто, ховерборды, и многое другое, но нет сотовой связи!

    Но сегодня в специальном репортаже для будет рассказ не о будущем, а о том, как устроена и работает современная сотовая связь.


    Для того, чтобы узнать о работе современной сотовой связи в формате 3G/4G, я напросился в гости к новому федеральному оператору Tele2 и провел целый день с их инженерами, которые объяснили мне все тонкости передач данных через наши мобильные телефоны.

    Но расскажу вначале немного об истории возникновения сотовой связи.

    Принципы работы беспрводной связи были опробованы почти 70 лет назад - первый общественный подвижный радиотелефон появился в 1946 г. в Сент-Луисе, США. В Советском союзе опытный образец мобильного радиотелефона был создан в 1957 году, потом ученые других стран создавали подобные устройства с различными характеристиками, и только в 70-х годах прошлого века в Америке были определены современные принципы работы сотовой связи, после чего и началось ее развитие.

    Мартин Купер - изобретатель прототипа портативного сотового телефона Motorola DynaTAC весом в 1,15 кг и размерами 22,5х12,5х3,75 см

    Если в западных странах к середине 90-х годов прошлого века сотовая связь была распространена повсеместно и ей пользовалась большая часть населения, то в России она только начала появляться, и стала доступной для всех чуть более 10 лет назад.


    Громоздкие кирпичеобразные мобильники работавшие в форматах первого и второго поколений ушли в историю, уступив место смартфонам с 3G и 4G, лучшей голосовой связью и высокой скоростью интернета.

    Почему связь называется сотовой? Потому что территория, на которой обеспечивается связь, разбивается на отдельные ячейки или соты, в центре которых располагаются базовые станции (БС). В каждой "соте" абонент получает одинаковый набор услуг в определенных территориальных границах. Это означает, что перемещаясь от одной "соты" к другой, абонент не чувствует территориальной привязанности и может свободно пользоваться услугами связи.

    Очень важно, чтобы была непрерывность соединения при перемещении. Это обеспечивается благодаря так называемому хэндовер (Handover), при котором соединение установленное абонентом как бы подхватывается соседними сотами по эстафете, а абонент продолжает разговаривать или копаться в соцсетях.

    Вся сеть делится на две подсистемы: подсистема базовых станций и подсистема коммутации. Схематически это выглядит так:

    В середине "соты", как было сказано выше находится базовая станция, которая обычно обслуживает три "соты". Радиосигнал от базовой станции излучается через 3 секторные антенны, каждая из которых направлена на свою "соту". Бывает так, что на одну "соту" направлены сразу несколько антенн одной базовой станции. Это связано с тем, что сеть сотовой связи работает в нескольких диапазонах (900 и 1800 МГц). Кроме того, на данной базовой станции может присутствовать оборудование сразу нескольких поколений связи (2G и 3G).

    Но на вышках БС Tele2 стоит оборудование только третьего и четвертого поколения - 3G/4G, так как компания решила отказаться от старых форматов в пользу новых, которые помогают избегать обрывов голосовой связи и обеспечивают более стабильный интернет. Завсегдатаи соцсетей поддержат меня в том, что в наше время скорость интернета очень важна, 100-200 кб/с уже не достаточно, как это было пару-тройку лет назад.

    Наболее привычным местом размещения БС является башня или мачта, построенная специально для нее. Наверняка вы могли видеть красно-белые вышки БС где-то в отдаленности от жилых домов (в поле, на холме), или там, где поблизости нет высоких зданий. Как вот эта, которая видна из моего окна.

    Однако, в условиях городской местности трудно найти место под размещение массивного сооружения. Поэтому в крупных городах базовые станции размещаются на зданиях. Каждая станция ловит сигнал от мобильных телефонов на удалении до 35 км.

    Это антенны, само оборудование БС находится на чердаке, или в контейнере на крыше, которое представляет из себя пару железных шкафов.

    Некоторые базовые станции расположены там, где вы даже не догадаетесь. Как например на крыше этой парковки.

    Антенна БС состоит из нескольких секторов, каждый из которых принимает/отправляет сигнал в свою сторону. Если вертикальная антенна осуществляет связь с телефонами, то круглая соединяет БС с контроллером.

    В зависимости от характеристик, каждый сектор может обслуживать до 72 звонков одновременно. БС может состоять из 6 секторов, и обслуживать до 432 звонков, однако обычно на станциях устанавливают меньше передатчиков и секторов. Сотовые операторы, такие как Tele2, предпочитают ставить больше БС для улучшения качества связи. Как мне сказали, здесь используется самое современное оборудование: базовые станции Ericsson, транспортная сеть - Alcatel Lucent.

    От подсистемы базовых станций сигнал передается в сторону подсистемы коммутации, где и происходит установление соединения с нужным абоненту направлением. В подсистеме коммутации есть ряд баз данных, в которых хранятся сведения об абонентах. Кроме того эта подсистема отвечает за безопасность. Если сказать проще, то коммутатор выполняет те же функции, что и девушки операторы, которые раньше руками соединяли вас с абонентом, только сейчас все это происходит автоматически.

    Оборудование для этой базовой станции спрятано в этом железном шкафу.

    Кроме обычных вышек есть также и мобильные варианты базовых станций, размещенные на грузовиках. Их очень удобно использовать во время стихийных бедствий или в местах массового скопления людей (футбольные стадионы, центральные площади) на время праздников, концертов и различных мероприятий. Но, к сожалению, из-за проблем в законодательстве широкого применения они пока не нашли.

    Для обеспечения оптимального покрытия радиосигналом на уровне земли, базовые станции проектируются специальным образом, потому несмотря на дальность в 35 км. сигнал не распространяется на высоту полета самолетов. Однако некоторые авиакомпании уже начали устанавливать на своих бортах небольшие базовые станции, обеспечивающие сотовую связь внутри самолета. Такая БС соединяется с наземной сотовой сетью с помощью спутникового канала. Система дополняется панелью управления, которая позволяет экипажу включать и выключать систему, а также отдельные типы услуг, например, выключать голос на ночных рейсах.

    Также я заглянул в офис Tele2, чтобы увидеть как специалисты контролируют качество сотовой связи. Если несколько лет назад такая комната была бы увешана до потолка мониторами показывающими данные сети (загруженность, аварии сети, и т.п.) то со временем надобность в таком количестве мониторов отпала.

    Технологии со временем сильно развились и достаточно вот такой небольшой комнаты с несколькими специалистами, чтобы наблюдать за работой всей сети в Москве.

    Немного видов из офиса Tele2.

    На совещании сотрудников компании обсуждаются планы по захвату столицы) С начала стройки до сегодняшнего дня Tele2 успел покрыть своей сетью всю Москву, и постепенно завоевывает Подмосковье, запуская более 100 базовых станций еженедельно. Так как я живу теперь в области, мне очень важно. чтобы эта сеть как можно быстрее пришла в мой городок.

    В планах компании на 2016 г. обеспечение высокоскоростной связи в метро на всех станциях, на начало 2016 связь Tele2 присутствует на 11 станциях: связь стандарта 3G/4G на метро «Борисово», «Деловой центр», «Котельники», «Лермонтовский проспект», «Тропарево», «Шипиловская», «Зябликово», 3G: «Белорусская» (Кольцевая), «Спартак», «Пятницкое шоссе», «Жулебино».

    Как я говорил выше, Tele2 отказалась от формата GSM в пользу стандартов третьего и четвертого поколения - 3G/4G. Это позволяет устанавливать базовые станции 3G/4G с большей частотой (например, внутри МКАД БС стоят на расстоянии около 500 метров друг от друга), чтобы обеспечивать более стабильную связь и высокую скорость мобильного интернета, чего не было в сетях предыдущих форматов.

    Из офиса компании я в компании инженеров Никифора и Владимира отправляюсь на одну из точек, где им нужно замерить скорость связи. Никифор стоит напротив одной из мачт, на которой установлено оборудование для обеспечения связи. Если приглядитесь, то заметите чуть далее слева еще одну такую мачту, с оборудованием других сотовых операторов.

    Как это ни странно, но сотовые операторы часто разрешают своим конкурентам использовать свои башенные сооружения для размещения антенн (естественно на взаимовыгодных условиях). Это вызвано тем, что строительство башни или мачты - дорогое удовольствие, и такой обмен позволяет сэкономить немало средств!

    Пока мы замеряли скорость связи, Никифора несколько раз прохожие бабушки и дядьки спросили не шпион ли он)) "Да, глушим радио "Свобода"!).

    Оборудование на самом деле выглядит необычно, по его виду можно предположить все что угодно.

    У специалистов компании немало работы, если учесть, что в Москве и области у компании более 7тыс. базовых станций: из них порядка 5тыс. 3G и около 2тыс. базовых станций LTE, а за последнее время количество БС увеличилось еще примерно на тысячу.
    Всего за три месяца в Подмосковье было выведено в эфир 55% от общего количества новых базовых станций оператора в регионе. В настоящий момент компания обеспечивает качественное покрытие территории, на которой проживает более 90% населения Москвы и Московской области.
    Кстати, в декабре сеть 3G Tele2 была признана лучшей по качеству среди всех столичных операторов.

    Но я решил лично проверить насколько хороша связь у Tele2, потому приобрел симку в ближайшем ко мне торговом центре на м.Войковская, с самым простым тарифом "Очень черный" за 299 р (400 смс/минут и 4 ГБ). Кстати, у меня был подобный билайновский тариф, который на 100 рублей дороже.

    Проверил скорость не отходя далеко от кассы. Прием - 6.13 Mbps, передача - 2.57 Mbps. Учитывая, что я стою в центре торгового центра это неплохой результат, связь Tele2 хорошо проникает сквозь стены большого ТЦ.

    На м.Третьяковская. Прием сигнала - 5.82 Mbps, передача - 3.22 Mbps.

    И на м.Красногвардейская. Прием - 6.22 Mbps, передача - 3.77 Mbps. Замерил у выхода из метро. Если принять во внимание, что это окраина Москвы, очень даже прилично. Считаю, что вполне приемлемая связь, уверенно можно сказать, что стабильная, если учитывать, что Tele2 появилась в Москве всего пару месяцев назад.

    В столице стабильная связь Tele2 есть, это хорошо. Очень надеюсь, что они побыстрее придут в область и я смогу в полной мере пользоваться их связью.

    Теперь и вы знаете как работает сотовая связь!

    Если у вас есть производство или сервис, о котором вы хотите рассказать нашим читателям, пишите пишите мне - Аслан ([email protected] ) и мы сделаем самый лучший репортаж, который увидят не только читатели сообщества, но и сайта http://ikaketosdelano.ru

    Подписывайтесь также на наши группы в фейсбуке, вконтакте, одноклассниках и в гугл+плюс , где будут выкладываться самое интересное из сообщества, плюс материалы, которых нет здесь и видео о том, как устроены вещи в нашем мире.

    Жми на иконку и подписывайся!

    Антенна типа ОБ-2, в частности, с по­мощью изоляторов может быть установлена на такелаже антенны типа БС-2 (рис. 7.45) с весьма незначительными затратами сил и средств. При этом антенны могут работать независимо друг от друга, являясь взаимным резервом. Антенны имеют линейные взаимноортогональные поляризации, поэтому провода полотна и такелажа антенны БС почти не влияют на характеристики ан­тенны ОБ. Антенны позволяют осуществить сдвоенный прием радиосигналов методом поляризационного разнесения.

    Антенны типа ОБ имеют относительно широкий лепесток диаграммы направленности, что снижает их помехоустойчивость. Этого недостатка лишена антенна типа ОБ-Е.


    Рис 7.45. Схема размещения антенны типа ОБ-2 на такелаже

    антенны типа БС-2

    Антенна типа ОБ-Е

    При разработке антенна ОБ-Е предполагалась для использования на приемных радиоцентрах магистральной радиосвязи взамен антенн типа БС-2, 2 БС-2, 3 БС-2, лучших по эффективности из имеющихся, но громоздких, дорогих, ненадежных в эксплуатации и трудоемких в обслуживании. Антенна ОБ-Е обладает высоким коэффициентом эффективность/стоимость С .

    Схема антенны ОБ-Е приведена на рис. 7.46. Она имеет маркировку ОБ-Е , где L – длина полотна антенны; h – высота подвеса полотна антенны. На рис. 7.46 обозначено: 1 – поверхность «земли»; 2, 8 – проводники противовесов; 3 – источник ЭДС (радиопередатчик, ГСС); 5 – проводник с бегущей волной; 7 – резистор – нагрузка.

    Антенна получила маркировку ОБ-Е (однопроводная, бегущей волны), где литера Е указывает на присутствие еще одной волны на проводнике, похожей по структуре на волну Е 0 в круглом вол­новоде, если смотреть в торец проводника.

    Антенна ОБ-Е имела длину L = 300 м.; эквивалентный диаметр проводника с бегущей волной d экв = 280 мм.; наминал нагрузочного резистора R н = 200 Ом; высота подвеса h = 3 м. Диапазон рабочих частот антенны ОБ-Е составляет Δf = 3 ÷ 30 МГц.

    Рис. 7.46. Антенна ОБ-Е

    Исследования выявили принципиальные расхождения в принципах работы антенн ОБ и ОБ-Е. Они позволяют полагать, что в околопроводном пространстве антенны ОБ-Е происходит перераспределение энергии излучения, что привело к созданию новой, простой по конструкции и очень компактной в поперечнике антенне для магистральных ДКМ радиосвязей, представляющей собой «рупорную антенну без видимых стенок».

    1) Где лучше располагать базовую станцию?
    Базовую станцию следует располагать на высокой точке таким образом, чтобы максимальное число клиентов могли видеть ее антенны. Это может быть крыша высокого здания, башня, заводская труба и т.д.

    2) Какое оборудование необходимо для создания базовой станции (БС)?
    Простейшая базовая станция (БС) состоит из:
    а. беспроводного маршрутизатора РЭС «РАПИРА»
    б. ВЧ кабеля с разъемами N. Для подключения к маршрутизатору используется разъем N-male. В зависимости от типа антенны на другом конце кабеля может использоваться N-male, N-female или иной разъем.
    в. Антенны - секторной или всенаправленной
    г. Кабеля снижения типа STP Cat.5
    д. Инжектора питания (входит в комплект поставки РЭС «РАПИРА»)
    БС высокой производительности может состоять из 3х или 6ти таких комплектов, обеспечивающих покрытие 360 градусов по азимуту. При использовании версии радиомаршрутизатора с двумя беспроводными интерфейсами может устанавливаться один маршрутизатор на 2 секторных антенны при условии, что частоты передачи отстоят друг от друга не менее чем на 100Мгц.

    3) Как много клиентов может быть подключено к одной базовой станции?
    Одна базовая станция может обслуживать до 128 клиентов на сектор. Следует помнить, что пропускная способность базовой станции делится между всеми клиентами. Таким образом, скорость, доступная каждому из клиентов зависит от общего числа клиентов, нагрузки, которую каждый из них создает, количества и активности компьютеров в локальных сетях, скрывающихся за клиентскими маршрутизаторами. Вы можете влиять на распределение ресурсов базовой станции, пользуясь средствами QoS , шейпинга и приоритезации, чтобы выделить каждому клиенту необходимую ему полосу пропускания.

    4) Что мне потребуется, чтобы подключить локальную сеть клиента к БС?
    Вам потребуется:
    а. маршрутизатор РЭС «РАПИРА», настроенный в режиме беспроводного клиента
    б. ВЧ кабель с разъемами. Для подключения к маршрутизатору используется разъем N-male. В зависимости от типа антенны на другом конце кабеля может использоваться N-male, N-female или иной разъем.
    в. Антенна направленная - параболическая или планарная (панельная)
    г. Кабель снижения типа STP Cat.5 (до 100м)
    д. Инжектор питания (входит в комплект поставки РЭС «РАПИРА»)
    В зависимости от результатов энергетического расчета выбирается антенна с необходимым коэффициентом усиления. Антенна монтируется так, чтобы до антенны базовой станции обеспечивалась прямая видимость.
    Маршрутизатор является шлюзом для компьютеров ЛВС клиента. ЛВС клиента может быть защищена средствами FIREWALL, встроенными в беспроводный маршрутизатор. Вы также можете задействовать функцию DHCP - сервера для автоматической раздачи компьютерам IP адресов и функцию NAT, чтобы скрыть всю ЛВС клиента за одним IP.

    5) Как много локальных сетей клиента может быть подключено к беспроводной сети посредством одного беспроводного маршрутизатора РЭС «РАПИРА»?
    РЭС «РАПИРА» имеет один интерфейс в «уличной» версии и 2 интерфейса в «комнатной». Соответственно числу интерфейсов вы можете подключить 1 или 2 сети. РЭС «РАПИРА» также поддерживает VLAN. Подключив к радиомаршрутизатору коммутатор с поддержкой VLAN 802.11Q, вы можете создать до 255 виртуальных интерфейсов и подключить соответствующее количество изолированных друг от друга локальных сетей, обеспечив маршрутизацию между ними и разграничив доступ листами доступа FIREWALL.

    6) Может ли быть ограничена доступная полоса пропускания для каждого из клиентов?
    Да, скорость по направлению «к клиенту» может быть централизованно ограничена на БС при помощи функции шейпинга. По направлению «от клиента» скорость может быть задана на клиентских радиомаршрутизаторах.

    7) Каков максимальный радиус обслуживания базовой станции?
    Максимальный радиус обслуживания, т.е. расстояние от БС до самого удаленного клиента зависит в частности от следующих факторов:
    а. мощности передатчика (зависит от модуляции) и чувствительности приемника, которая в свою очередь тоже зависит от выбранной скорости (модуляции).
    б. усиления антенны БС и антенны клиента
    в. потерь в СВЧ кабелях и разъемах (зависит от их типа и длины кабелей)
    д. наличия преград для распространения волны в 1й зоне Френеля
    е. помех от систем работающих на той же или близкой частоте
    Обычно радиус обслуживания соты БС не превышает 10-15км. позволяет заранее оценить максимальный радиус обслуживания при использовании различных антенн и усилителей.

    8) Могу ли я использовать усилители чтобы увеличить радиус обслуживания или длину канала точка - точка?
    Да, вы можете использовать усилитель внешний усилитель. Модификации РЭС «РАПИРА» PA400 содержат встроенный двунаправленный усилитель. Использование версии PA400 позволяет до 10dB поднять уровень сигнала на передачу, чувствительность на 2-3dB и помогает увеличить радиус обслуживания в 2 - 4 раза. Использование версии PA400 со встроенным усилителем обеспечивает существенную экономию и дополнительны эксплуатационные преимущества.

    9) Как выбирать антенну для клиентской станции или канала точка - точка?
    Помните старое и мудрое правило «антенна - лучший усилитель». В отличие от усилителя, антенна не вносит дополнительных шумов и не усиливает помехи вместе с полезным сигналом на приеме. Хорошая направленная антенна позволяет «отстроиться» от помех по направлению за счет использования узкого луча. Например, параболическая антенна диаметром 0,9м обеспечивает усиление 30dB и обеспечивает ширину луча порядка 3 градусов. На расстоянии 5 километров такая антенна дает «пятно» излучения с радиусом всего около 130метров. В диапазоне 5-6 ГГц размеры антенны, требуемые для достижения соответствующего усиления меньше, чем для 2.3 - 2.5 ГГц. Помните, что параболические антенны имеют лучшие характеристики по уровню заднего и боковых лепестков по сравнению с планарными антеннами.

    10) Как выбирать антенны для базовой станции?
    Антенны для базовой станции лучше использовать секторные. Чем меньше угол (сектор) обслуживания, тем меньше помех будет «собирать» такая антенна, но тем больше маршрутизаторов и частотных каналов потребует такая БС для покрытия нужного сектора. Наиболее распространены антенны с шириной основного лепестка 60, 90 и 120 градусов c усилением от 15 до 13dB. Обычно в вертикальной плоскости ширина лепестка составляет 6-8 градусов, то есть излучение «прижато» к земле и распространяется вдоль горизонта. Чем меньше ширина главного лепестка антенны , тем больше ее усиление, обусловленное концентрацией излучаемой энергии. При выборе и юстировке антенны следует пользоваться соответствующим расчетом, чтобы вычислить необходимый наклон антенны по углу места. Слишком малый угол излучения в вертикальной плоскости может ограничить подключение клиентов вблизи от базовой станции, особенно если последняя расположена слишком высоко.

    Использование антенн с круговой диаграммой направленности 360 градусов не рекомендуется при создании БС с большим планируемым радиусом обслуживания и числом клиентов, особенно в условиях помех. Кроме того, плоскость излучения всенаправленной антенны направлена строго горизонтально и близкие абоненты, расположенные ниже БС будут испытывать затруднения со связью.

    12) Нужна ли «прямая видимость»?
    Да, прямая видимость необходима в большинстве случаев. Это означает, что на воображаемой прямой линии между антеннами устройств не должно быть физических препятствий (деревьев, зданий и пр). Следует также учитывать природу распространения волн и делать запас на дифракцию ().

    13) Что такое Зоны Френеля?
    Зоны Френеля - это пространство вокруг воображаемой линии «прямой видимости», в котором распространяется радиоволна. Хотя бы 80% этой зоны, в которых сосредоточена основная мощность излучения, должны быть также свободны от препятствий, в противном случае сигнал будет ослаблен. Если вы хотите «стрельнуть» в щель между двух домов, сначала диаметра 1й зоны Френеля. Например, для канала 5.8ГГц длиной 16км зона Френеля в середине линка - это круг с радиусом 14м. Промежуток между домами должен составлять не менее 28м. Для 2.4ГГц радиус зоны Френеля будет уже 34м.

    14) Могу ли я «прозрачно» объединить 2 ЛВС?
    Да, вы можете обеспечить прозрачное прохождение трафика через беспроводные маршрутизаторы «РАПИРА» , настроив их для работы в режиме бриджа. При этом кадры Ethernet проходят фильтрацию по динамической таблице MAC адресов перед отправкой в эфир. Подробнее о настройке оборудования для работы в данном режиме читайте в инструкции по эксплуатации.

    15) Как много времени требуется для монтажа простейшей беспроводной сети?
    Совсем немного! Квалифицированной бригаде из 2х человек обычно требуется не более одного дня для монтажа канала точка - точка. Монтаж базовой станции из 3х секторов и подключение 5ти клиентов потребует 2-3 дня.

    16) Какой длины и разновидности ВЧ кабель использовать?
    Кратчайшей длины. Помните, что на частотах 2.3 - 2.5ГГц, а тем более 5-6ГГц кабель вносит весьма существенное затухание. РЭС «РАПИРА» специально имеет всепогодное исполнение, чтобы обеспечить возможность монтажа непосредственно рядом с антенной. При этом вы можете использовать гибкий и удобный в обращении кабель марки 8D-FB (синий или зеленый) или ему подобный. Если же вы хотите расположить антенну на удалении 10 - 20м от маршрутизатора, следует использовать либо толстый гибкий кабель с низким затуханием, например 10D-FB, либо жесткий кабель с соответствующими разъемами. Мы рекомендуем использовать кабели со сплошным вспененным диэлектриком. Эти кабели обладают более стабильными характеристиками и проще в обращении. Кабели с диэлектриком в виде воздушного промежутка, например распространенной марки DX-10 (желтый кабель) обладают рядом неприятных недостатков:
    a. при монтаже разъемов пайкой, а также от нагрева при термоусаживании гидроизоляции тонкий внутренний диэлектрик плавится и кабель теряет свойства, начинает вносить огромное затухание
    b. в процессе эксплуатации вследствие перепадов уличной температуры и связанного с этим периодического возникновения воздушного разрежения, в полости диэлектрика со временем накапливается влага, от которой кабель теряет работоспособность
    c . кабели меняют свойства при изгибании, поскольку центральная жила слабо зафиксирована