Какие непозиционные системы счисления вам известны. Система счисления

Единичная система счисления

Необходимость в записи чисел стала возникать у людей еще в древности после того, как они научились считать. Свидетельством этого являются археологические находки в местах стойбищ первобытных людей, которые относятся к периоду палеолита ($10$-$11$ тыс. лет до н.э.). Изначально количество предметов изображали, используя определенные знаки: черточки, насечки, кружочки, нанесенные на камни, дерево или глину, а также узлы на веревках.

Рисунок 1.

Ученые эту систему записи чисел называют единичной (унарной) , поскольку число в ней образовано повторением одного знака, который символизирует единицу.

Недостатки системы:

    при написании большого числа необходимо использовать большое количество палочек;

    возможно легко ошибиться при нанесении палочек.

Позднее, чтобы облегчить счет, эти знаки люди стали объединять.

Пример 1

С примерами использования единичной системы счисления можно встретится и в нашей жизни. Например, маленькие дети пытаются изобразить на пальцах сколько им лет, или же счетные палочки используют для обучения счету в первом классе.

Единичная система не совсем удобна, так как записи выглядят очень длинно и их нанесение довольно утомительно, поэтому со временем стали появляться более практичые в использовании системы счисления.

Вот некоторые примеры.

Древнеегипетская десятичная непозиционная система счисления

Данная система счисления появилась около 3000 лет до н.э. в результате того, что жители Древнего Египта придумали свою числовую систему, в которой при обозначении ключевых чисел $1$, $10$, $100$ и т.д. были использованы иероглифы, что было удобным при написании на глиняных дощечках, которые заменяли бумагу. Другие числа составлялись из них с помощью сложения. Сначала записывалось число высшего порядка, а затем низшего. Умножали и делили египтяне, последовательно удваивая числа. Каждая цифра могла повторяться до $9$ раз. Примеры чисел данной системы приведены ниже.

Рисунок 2.

Римская система счисления

Данная система принципиально не намного отличается от предыдущей и сохранилась до наших дней. В ее основе находятся знаки:

    $I$ (один палец) для числа $1$;

    $V$ (раскрытая ладонь) для числа $5$;

    $X$ (две сложенные ладони) для $10$;

    для обозначения чисел $100$, $500$ и $1000$ использовались первые буквы соответствующих латинских слов (Сentum – сто, Demimille – половина тысячи, Мille – тысяча).

При составлении чисел римляне использовали следующие правила:

    Число равно сумме значений расположенных подряд нескольких одинаковых «цифр», образующих группу первого вида.

    Число равно разности значений двух «цифр», если слева от большей стоит меньшая. В этом случае от значения большей отнимается значение меньшей. Вместе они образуют группу второго вида. При этом левая «цифра» может быть меньше правой максимально на $1$ порядок: перед $L(50)$ и $C(100$) из «младших» может стоять только $Х(10$), перед $D(500$) и $M(1000$) – только $C(100$), перед $V(5) – I(1)$.

    Число равно сумме значений групп и «цифр», не вошедших в группы $1$ или $2$ вида.

Рисунок 3.

Римскими цифрами пользуются издревле: ими обозначаются даты, номера томов, разделов, глав. Раньше считал, что обычные арабские цифры можно легко подделать.

Алфавитные системы счисления

Данные системы счисления более совершенны. К ним относятся греческая, славянская, финикийская, еврейская и другие. В этих системах числа от $1$ до $9$, а также количество десятков (от $10$ до $90$), сотен (от $100$ до $900$) были обозначены буквами алфавита.

В древнегреческой алфавитной системе счисления числа $1, 2, ..., 9$ обозначались первыми девятью буквами греческого алфавита, и т.д. Для обозначения чисел $10, 20, ..., 90$ применялись следующие $9$ букв а для обозначения чисел $100, 200, ..., 900$ – последние $9$ букв.

У славянских народов числовые значения букв устанавливались в соответствии с порядком славянского алфавита, использовавшего изначально глаголицу, а затем кириллицу.

Рисунок 4.

Замечание 1

Алфавитная система использовалась и в древней Руси. До конца $XVII$ века в качестве цифр использовались $27$ букв кириллицы.

Непозиционные системы счисления имеют ряд существенных недостатков:

    Существует постоянная потребность введения новых знаков для записи больших чисел.

    Невозможно представлять дробные и отрицательные числа.

    Сложно выполнять арифметические операции, так как не существует алгоритмов их выполнения.

Единичная система счисления

Необходимость в записи чисел стала возникать у людей еще в древности после того, как они научились считать. Свидетельством этого являются археологические находки в местах стойбищ первобытных людей, которые относятся к периоду палеолита ($10$-$11$ тыс. лет до н.э.). Изначально количество предметов изображали, используя определенные знаки: черточки, насечки, кружочки, нанесенные на камни, дерево или глину, а также узлы на веревках.

Рисунок 1.

Ученые эту систему записи чисел называют единичной (унарной) , поскольку число в ней образовано повторением одного знака, который символизирует единицу.

Недостатки системы:

    при написании большого числа необходимо использовать большое количество палочек;

    возможно легко ошибиться при нанесении палочек.

Позднее, чтобы облегчить счет, эти знаки люди стали объединять.

Пример 1

С примерами использования единичной системы счисления можно встретится и в нашей жизни. Например, маленькие дети пытаются изобразить на пальцах сколько им лет, или же счетные палочки используют для обучения счету в первом классе.

Единичная система не совсем удобна, так как записи выглядят очень длинно и их нанесение довольно утомительно, поэтому со временем стали появляться более практичые в использовании системы счисления.

Вот некоторые примеры.

Древнеегипетская десятичная непозиционная система счисления

Данная система счисления появилась около 3000 лет до н.э. в результате того, что жители Древнего Египта придумали свою числовую систему, в которой при обозначении ключевых чисел $1$, $10$, $100$ и т.д. были использованы иероглифы, что было удобным при написании на глиняных дощечках, которые заменяли бумагу. Другие числа составлялись из них с помощью сложения. Сначала записывалось число высшего порядка, а затем низшего. Умножали и делили египтяне, последовательно удваивая числа. Каждая цифра могла повторяться до $9$ раз. Примеры чисел данной системы приведены ниже.

Рисунок 2.

Римская система счисления

Данная система принципиально не намного отличается от предыдущей и сохранилась до наших дней. В ее основе находятся знаки:

    $I$ (один палец) для числа $1$;

    $V$ (раскрытая ладонь) для числа $5$;

    $X$ (две сложенные ладони) для $10$;

    для обозначения чисел $100$, $500$ и $1000$ использовались первые буквы соответствующих латинских слов (Сentum – сто, Demimille – половина тысячи, Мille – тысяча).

При составлении чисел римляне использовали следующие правила:

    Число равно сумме значений расположенных подряд нескольких одинаковых «цифр», образующих группу первого вида.

    Число равно разности значений двух «цифр», если слева от большей стоит меньшая. В этом случае от значения большей отнимается значение меньшей. Вместе они образуют группу второго вида. При этом левая «цифра» может быть меньше правой максимально на $1$ порядок: перед $L(50)$ и $C(100$) из «младших» может стоять только $Х(10$), перед $D(500$) и $M(1000$) – только $C(100$), перед $V(5) – I(1)$.

    Число равно сумме значений групп и «цифр», не вошедших в группы $1$ или $2$ вида.

Рисунок 3.

Римскими цифрами пользуются издревле: ими обозначаются даты, номера томов, разделов, глав. Раньше считал, что обычные арабские цифры можно легко подделать.

Алфавитные системы счисления

Данные системы счисления более совершенны. К ним относятся греческая, славянская, финикийская, еврейская и другие. В этих системах числа от $1$ до $9$, а также количество десятков (от $10$ до $90$), сотен (от $100$ до $900$) были обозначены буквами алфавита.

В древнегреческой алфавитной системе счисления числа $1, 2, ..., 9$ обозначались первыми девятью буквами греческого алфавита, и т.д. Для обозначения чисел $10, 20, ..., 90$ применялись следующие $9$ букв а для обозначения чисел $100, 200, ..., 900$ – последние $9$ букв.

У славянских народов числовые значения букв устанавливались в соответствии с порядком славянского алфавита, использовавшего изначально глаголицу, а затем кириллицу.

Рисунок 4.

Замечание 1

Алфавитная система использовалась и в древней Руси. До конца $XVII$ века в качестве цифр использовались $27$ букв кириллицы.

Непозиционные системы счисления имеют ряд существенных недостатков:

    Существует постоянная потребность введения новых знаков для записи больших чисел.

    Невозможно представлять дробные и отрицательные числа.

    Сложно выполнять арифметические операции, так как не существует алгоритмов их выполнения.

В непозиционных системах счисления величина, обозначающая цифру, не зависит от положения в числе. К тому же, система может накладывать ограничения на расстановку цифр, например , чтобы цифры располагались по убыванию.

Существуют такие непозиционные системы счисления:

Единичная система счисления,

Пятеричная система счисления (Счёт на пятки́),

Древнеегипетская система счисления,

Вавилонская система счисления,

Алфавитные системы счисления,

Еврейская система счисления,

Греческая система счисления,

Римская система счисления,

Система счисления майя,

Кипу инков,

Рассмотрим некоторые из, приведенных выше, систем счисления.

Единичная система счисления.

С первых попыток научиться считать у людей возникла необходимость записи чисел. Сначала это было легко — зарубка либо черточка на любой поверхности отвечала за один предмет. Таким образом возникла первая система счисления — единичная .

Число в единичной системе счисления представляет собой строку из черточек (палочек), количество которых равно значению данного числа. Таким образом, урожай из 100 фиников будет равен числу, состоящему из 100 черточек.

В более позднее время для упрощения восприятия больших чисел, эти знаки стали группировать по три или по пять. Далее равнообъёмные группы знаков начали заменять новым знаком — так возникли прообразы современных цифр.

У данной системы есть значительные недостатки — чем больше число, тем длиннее строка из палочек. Кроме того, существует большая вероятность в записи числа, пропустив или случайно дописав палочку.

Изначально в счете использовали пальцы рук, поэтому первые знаки появились для групп из 5 и 10 штук (единиц). Все это позволило создать более удобные системы записи чисел.

Древнеегипетская десятичная система счисления.

В Древнем Египте использовали свои символы (цифры) для обозначения чисел 1, 10, 102, 103, 104, 105, 106, 107 . Вот некоторые из них:

Почему мы ее называем десятичной? Как указано выше — люди начали группировать символы. В Египте — решили группировать по 10, оставив без изменений цифру “1”. Здесь, число 10 называется основанием десятичной системы счисления , а все символы — представление числа 10 в определенной степени.

Числа в древнеегипетской системе счисления записывали, в виде комбинаций таких символов, и все они повторялись не больше 9 раз. Результатом было сумма элементов числа. Этот метод получения значения свойственен каждой непозиционной системе счисления. Для примера посмотрите на запись числа 345:

Вавилонская шестидесятеричная система счисления.

В вавилонской системе счисления использовали только 2 символа: “прямой” клин — для единиц и “лежащий” — для десятков. Для определения значения числа нужно изображение числа разбить на разряды справа налево. Новый разряд начинается с появления прямого клина после лежачего. Для примера посмотрим на число 32:

Число 60 и все его степени так же обозначаются прямым клином, что и “1”. Поэтому вавилонская система счисления получила название шестидесятеричной системы счисления .

Все числа от 1 до 59 вавилоняне записывали в десятичной непозиционной системе, а значения больше 59 — в позиционной с основанием 60. Например, число 92:

Запись числа была не конкретной, так как не было цифры, которая обозначала бы нуль. Представление числа 92 могло обозначать не только 92=60+32 , но и, например, 3632=3600+32 . Для определения абсолютного значения числа они ввели новый символ для обозначения пропущенного шестидесятеричного разряда, что соответствует появлению цифры 0 в записи десятичного числа:

Значит, число 3632 записывают так:

Шестидесятеричная вавилонская система — первая система счисления, которая частично основана на позиционном принципе . Эту систему счисления используют и сейчас, например , для определения времени — час состоит из 60 минут, а минута из 60 секунд.

Римская система счисления.

Римская система счисления немного похожа с египетской. Здесь для обозначения чисел 1, 5, 10, 50, 100, 500 и 1000 используют заглавные латинские буквы I, V, X, L, C, D и M соответственно. Число в римской системе счисления — это набор стоящих подряд цифр.

Способы определения значения числа:

  • Значение числа соответствует сумме значений его цифр. Например , число 32 в римской системе счисления записывается так XXXII=(X+X+X)+(I+I)=30+2=32
  • Когда слева от большей цифры стоит меньшая, то значение это разность между большей и меньшей цифрами. Кроме того, левая цифра может быть меньше правой максимум на 1 порядок: т.е. перед L(50) и С(100) из «младших» может быть лишь X(10) , перед D(500) и M(1000) — только C(100) , перед V(5) — только I(1) ; число 444 в римской системе счисления выглядит так:

CDXLIV = (D-C)+(L-X)+(V-I) = 400+40+4=444.

  • Значение равно сумме значений групп и цифр, не подходящих под 1 и 2 пункты.

Системы счисления - что это? Даже не зная ответа на этот вопрос, каждый из нас поневоле в своей жизни пользуется системами счисления и не подозревает об этом. Именно так, во множественном числе! То есть не одной, а несколькими. Прежде чем привести примеры непозиционных систем счисления, давайте разберемся в этом вопросе, поговорим и о позиционных системах тоже.

Потребность в счете

С древности люди имели потребность в счете, то есть интуитивно осознавали, что нужно каким-то образом выразить количественное видение вещей и событий. Мозг подсказывал, что необходимо использовать предметы для счета. Наиболее удобными всегда были пальцы на руках, и это понятно, ведь они всегда в наличии (за редкими исключениями).

Вот и приходилось древним представителям рода человеческого загибать пальцы в прямом смысле - обозначать количество убитых мамонтов, например. Названий у таких элементов счета еще не было, а лишь визуальная картинка, сопоставление.

Современные позиционные системы счисления

Система счисления - это метод (способ) преставления количественных значений и величин посредством определенных знаков (символов или букв).

Необходимо понимать, что такое позиционность и непозиционность в счете, прежде чем приводить примеры непозиционных систем счисления. Позиционных систем счисления множество. Сейчас используют в различных областях знаний следующие: двоичную (включает только два значимых элемента: 0 и 1), шестеричную (количество знаков - 6), восьмеричную (знаков - 8), двенадцатеричную (двенадцать знаков), шестнадцатеричную (включает шестнадцать знаков). Причем каждый ряд знаков в системах начинается с нуля. основаны на использовании двоичных кодов - двоичной позиционной системы счисления.

Десятичная система счисления

Позиционностью считается наличие в различной степени значимых позиций, на которых располагаются знаки числа. Лучше всего это можно продемонстрировать на примере десятичной системы счисления. Ведь именно ею мы привыкли пользоваться с самого детства. Знаков в этой системе десять: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Возьмем число 327. В нем имеются три знака: 3, 2, 7. Каждый из них расположен на своей позиции (месте). Семерка занимает позицию, отведенную под единичные значения (единицы), двойка - десятки, а тройка - сотни. Так как число трехзначное, следовательно, позиций в нем всего три.

Исходя из вышесказанного, такое трехзначное десятичное число можно описать следующим образом: три сотни, два десятка и семь единиц. Причем значимость (важность) позиций отсчитывается слева направо, от слабой позиции (единицы) к более сильной (сотни).

Нам очень удобно себя чувствовать в десятичной позиционной системе счисления. У нас на руках десять пальцев, на ногах - также. Пять плюс пять - так, благодаря пальцам, мы с детства легко представляем себе десяток. Вот почему бывает легко детям учить таблицу умножения на пять и на десять. А еще так просто научиться считать денежные банкноты, которые чаще всего кратны (то есть делятся без остатка) на пять и на десять.

Другие позиционные системы счисления

К удивлению многих, следует сказать, что не только в десятичной системе счета наш мозг привык делать некие расчеты. До сих пор человечество пользуется шестеричной и двенадцатеричной системами счисления. То есть в такой системе существует только шесть знаков (в шестеричной): 0, 1, 2, 3, 4, 5. В двенадцатеричной их двенадцать: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, А, В, где А - обозначает число 10, В - число 11 (так как знак должен быть один).

Посудите сами. Мы считаем время шестерками, не так ли? Один час - шестьдесят минут (шесть десятков), одни сутки - это двадцать четыре часа (два раза по двенадцать), год - двенадцать месяцев и так далее... Все временные интервалы легко укладываются в шести- и двенадцатеричные ряды. Но мы настолько к этому привыкли, что даже не задумываемся при отсчете времени.

Непозиционные системы счисления. Унарная

Необходимо определиться в том, что это такое - непозиционная система счисления. Это такая знаковая система, в которой нет позиций для знаков числа, или принцип "прочтения" числа от позиции не зависит. В ней также существуют свои правила записи или вычислений.

Приведем примеры непозиционных систем счисления. Вернемся к древности. Люди нуждались в счете и придумали наиболее простое изобретение - узелки. Непозиционной системой счисления является узелковая. Один предмет (мешок риса, бык, и пр.) отсчитывали, например, при покупке или продаже и завязывали узелок на веревочке.

В итоге на веревке получалось столько узелков, сколько мешков риса куплено (как пример). Но также это могли быть насечки на деревянной палочке, на каменной плите и т.д. Такая система счисления стала называться узелковой. У нее существует второе название - унарная, или единичная ("уно" на латыни означает "один").

Становится очевидным, что данная система счисления - непозиционная. Ведь о каких позициях может идти речь, когда она (позиция) всего одна! Как ни странно, в некоторых уголках Земли до сих пор в ходу унарная непозиционная система счисления.

Также к непозиционным системам счисления относят:

  • римскую (для написания чисел используются буквы - латинские символы);
  • древнеегипетскую (похожа на римскую, также использовались символы);
  • алфавитную (использовались буквы алфавита);
  • вавилонскую (клинопись - использовали прямой и превернутый "клин");
  • греческую (также относят к алфавитной).

Римская система счисления

Древняя римская империя, а также ее наука, была очень прогрессивной. Римляне дали миру множество полезных изобретений науки и искусства, в том числе свою систему счета. Две сотни лет назад римские числа использовали для обозначения сумм в деловых документах (таким образом избегали подделки).

Пример непозиционной системы счисления, она известна нам сейчас. Также римская система активно используется, но не для математических расчетов, а для узко направленных действий. Например, с помощью римских чисел принято обозначать исторические даты, века, номера томов, разделов и глав в книжных изданиях. Часто используют римские знаки для оформления циферблатов часов. А также римская нумерация является примером непозиционной системы счисления.

Римляне обозначали цифры буквами латиницы. Причем числа они записывали по определенным правилам. Существует перечень ключевых символов в римской системе счисления, с помощью них записывались все числа без исключения.

Правила составления чисел

Требуемое число получалось путем сложения знаков (букв латиницы) и вычисления их суммы. Рассмотрим, как символически записываются знаки в римской системе и как нужно их "считывать". Перечислим основные законы формирования чисел в римской непозиционной системе счисления.

  1. Число четыре - IV, состоит из двух знаков (I, V - один и пять). Оно получается путем вычитания меньшего знака из большего, если он стоит левее. Когда меньший знак расположен справа, необходимо складывать, тогда получится число шесть - VI.
  2. Необходимо складывать два одинаковых знака, стоящих рядом. Например: СС - это 200 (С - 100), или ХХ - 20.
  3. Если первый знак числа меньше второго, то третьим в этом ряду может быть символ, значение которого еще меньше первого. Чтобы не запутаться, приведем пример: CDX - 410 (в десятичной).
  4. Некоторые крупные числа могут быть представлены разными способами, что является одним из минусов римской системы счета. Приведем примеры: MVM (римская система) = 1000 + (1000 - 5) = 1995 (десятичная система) или MDVD = 1000 + 500 + (500 - 5) = 1995. И это еще не все способы.

Приемы арифметики

Непозиционная система счисления - это иногда сложный набор правил формирования чисел, их обработки (действий над ними). Арифметические операции в непозиционных системах счисления - дело непростое для современных людей. Не завидуем древнеримским математикам!

Пример сложения. Попробуем сложить два числа: XIX + XXVI = XXXV, это задание выполняется в два действия:

  1. Первое - берем и складываем меньшие доли чисел: IX + VI = XV (I после V и I перед X "уничтожают" друг друга).
  2. Второе - складываем большие доли двух чисел: X + XX = XXX.

Вычитание выполняется несколько сложнее. Уменьшаемое число требуется разбить на составные элементы, а после этого в уменьшаемом и вычитаемом сократить дублируемые символы. Из числа 500 вычтем 263:

D - CCLXIII = CCCCLXXXXVIIIII - CCLXIII = CCXXXVII.

Умножение римских чисел. Кстати, необходимо упомянуть, что у римлян не имелось знаков арифметичеких операций, они просто словами обозначали их.

Множимое число умножать нужно было на каждый отдельный символ множителя, получалось несколько произведений, которые необходимо было сложить. Таким способом производят умножение многочленов.

Что касается деления, то этот процесс в римской системе счисления был и остается наиболее сложным. Тут применялись древние римские счеты - абак. Чтобы работать с ним людей специально обучали (и не всякому человеку удавалось такую науку освоить).

О недостатках непозиционных систем

Как было сказано выше, в непозиционных системах счисления существуют свои недостатки, неудобства в использовании. Унарная достаточна проста для простого счета, но для арифметики и сложных вычислений она не годится вовсе.

В римской отсутствуют единые правила формирования больших чисел и возникает путаница, а также в ней очень сложно производить вычисления. Кроме того, самым которое могли записать древние римляне с помощью своего метода, было 100000.

В вопросах организации обработки информации с помощью ЭВМ важное место занимают системы счисления, формы представления данных и специальное кодирование чисел.

Совокупность приемов наименования и записи чисел называется счислением . Под системой счисления понимается способ представления любого числа с помощью ограниченного алфавита символов, называемых цифрами.

Все системы счисления можно разделить на два класса: позиционные и непозиционные .

В непозиционных системах счисления каждое число обозначается соответствующей совокупностью символов. В непозиционных системах счисления значение символа не зависит от того места, которое он занимает в числе. Примером непозиционной системы счисления является римская система счисления . В этой системе используется 7 символов, которые соответствуют следующим величинам:

I (1), V(5), X(10), l(50), c(100), d(500), m(1000).

В римской нумерации явственно сказываются следы пятиричной системы счисления. В языке же римлян (латинском) никаких следов пятиричной системы нет. Значит, эти цифры были заимствованы римлянами у другого народа (предположительно у этрусков).

Все целые числа (до 5000) записываются с помощью повторения вышеприведенных цифр. При этом, если большая цифра стоит перед меньшей, то они складываются, если же меньшая стоит перед большей (в этом случае она не может повторяться), то меньшая вычитается из большей. Подряд одна и та же цифра ставится не более трех раз. Например, III(3), LIX(59), DLV(555), MCMXCVIII (1998).

Недостатком непозиционных систем счисления является отсутствие формальных правил записи чисел и арифметических действий над ними. В вычислительной технике непозиционные системы не применяются.

В древнем Вавилоне примерно за 40 веков до нашего времени создалась поместная (позиционная) нумерация, т.е. такой способ изображения чисел, при котором одна и та же цифра может обозначать разные числа, смотря по месту, занимаемому этой цифрой. Наша теперешняя нумерация – тоже поместная, однако в вавилонской поместной нумерации ту роль, которую играет у нас число 10, играло число 60, и потому эту нумерацию называют шестидесятиричной.

Шестидесятиричная запись целых чисел не получила распространения за пределами ассиро-вавилонского царства, но шестидесятиричные дроби проникли далеко за эти пределы: в страны Среднего Востока, Средней Азии, в Северную Африку и Западную Европу. Они широко применялись, особенно в астрономии, вплоть до изобретения десятичных дробей. Следы шестидесятиричных дробей сохраняются и поныне в делении углового и дугового градуса (а также часа) на 60 минут и минуты на 60 секунд.

Позиционные системы счисления обладают большими преимуществами в наглядности представления чисел и в простоте выполнения арифметических операций. В позиционной системе счисления значение числа определяется не только набором входящих в него цифр, но и их местом (позицией) в последовательности цифр, изображающих это число. Примером позиционной системой счисления является десятичная система. Помимо десятичной существуют другие позиционные системы счисления, для записи чисел в различных системах счисления используется некоторое количество отличных друг от друга символов. Число таких символов в позиционной системе счисления называется основанием системы счисления и обозначается буквой q . В десятичной системе используется десять символов (цифр): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, и основанием системы является число 10. В таблице 3.1 приведены наименования некоторых позиционных систем счисления и перечень цифр, из которых образуются в них числа.

Таблица 3.1.

Основание

Система счисления

Символы

Двоичная

Троичная

Восьмиричная

0, 1, 2, 3, 4, 5, 6, 7

Десятичная

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Шестнадцатиричная

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Особое место среди позиционных систем счисления занимают системы со степенными весами разрядов, в которых веса смежных позиций цифр (разрядов) отличаются по величине в постоянное количество раз, равное основанию q системы счисления.

В общем случае в такой позиционной системе счисления с основанием q любое число X может быть представлено в виде полинома разложения (суммы произведений коэффициентов на степени основания системы счисления):

здесь q – основание системы счисления;
– запись числа в системе счисления по основаниюq ; – целые числа, меньшиеq ; n – число разрядов в целой части числа; m – число разрядов в дробной части числа.

Таким образом, значение каждого знака в числе зависит от позиции, которую занимает символ в записи числа. Именно поэтому такие системы счисления называют позиционными. Например,

В информатике применяют позиционные системы счисления с недесятичным основанием: двоичную, восьмиричную и шестнадцатиричную, т.е. системы счисления с основанием
, гдеk = 1, 3, 4.

В настоящее время позиционные системы счисления более широко распространены, чем непозиционные. Это объясняется тем, что они позволяют записывать большие числа с помощью сравнительно небольшого числа знаков. Еще более важное преимущество позиционных систем – это простота и легкость выполнения арифметических операций над числами, записанными в этих системах.

Вычислительные машины в принципе могут быть построены в любой системе счисления. Но столь привычная для нас десятичная система окажется крайне неудобной. Если в механических вычислительных устройствах, использующих десятичную систему, достаточно просто применить элемент со множеством состояний (колесо с десятью зубьями), то в электронных машинах надо было бы иметь 10 различных потенциалов в цепях.

Наиболее удобной для построения ЭВМ оказалась двоичная система счисления, т.е. система счисления, в которой используются только две цифры: 0 и 1, т.к. с технической точки зрения создать устройство с двумя состояниями проще, также упрощается различение этих состояний.

Для представления этих состояний в цифровых системах достаточно иметь электронные схемы, которые могут принимать два состояния, четко различающиеся значением какой-либо электрической величины – потенциала или тока. Одному из значений этой величины соответствует цифра 0, другому – 1. Относительная простота создания электронных схем с двумя электрическими состояниями и привела к тому, что двоичное представление чисел доминирует в современной цифровой технике. При этом 0 обычно представляется низким уровнем потенциала, а 1 – высоким уровнем. Такой способ представления называется положительной логикой.