Ламповый кв усилитель мощности. Каким должен быть усилитель мощности любительской KB радиостанции Вч трансформаторы для кв усилителей радиолюбителей

ламповые, транзисторные

Как показывает практика - немногие из радиолюбителей работают QRP, большая же часть рано или поздно начинает мечтать об увеличении мощности передатчика. Вот тогда и встаёт вопрос о предпочтении лампе или транзистору. Многолетняя практика эксплуатации тех и иных показала, что ламповые усилители гораздо проще в изготовлении и менее критичны к условиям эксплуатации, а вес анодных трансформаторов практически компенсируется весом радиаторов, необходимых для охлаждения мощных транзисторов, которые более капризны в эксплуатации, особенно к перегрузкам, поэтому эксперименты с ними обходятся дороговато. Проще выполнить источник питания мощностью 2 кВт на 2000 В при токе 1 А, чем 20 В при токе 100 А. Наличие малогабаритных электролитических конденсаторов, рассчитанных на высокое напряжение и большую ёмкость, позволяет создавать малогабаритные источники высокого напряжения для ламповых усилителей непосредственно от сети без использования силовых трансформаторов.

Усилитель мощности является одним из основных атрибутов комплектации радиостанции контестмена и DX-мена. От его выбора зависят результаты в соревнованиях и рейтинги.

КВ усилители мощности на лампах, транзисторные КВ усилители мощности

Выходным усилителем (усилителем мощности - УМ) называется усилитель, нагруженный на антенну. Выходной усилитель потребляет большую часть энергии. Работа УМ в основном определяет энергетические показатели всей радиостанции, поэтому главным требованием для выходного каскада является получение высоких энергетических показателей. Кроме того, для выходного усилителя весьма важна хорошая фильтрация высших гармоник.

Хороший современный КВ усилитель мощности довольно сложное и трудоёмкое устройство, о чём свидетельствуют мировые цены на фирменные УМ, хотя бы по отношению к стоимости трансиверов среднего класса, выпускаемых теми же фирмами. Это объясняется, во-первых, высокой стоимостью самих ламп, применяемых в УМ, а во-вторых, также высоким процентом ручного труда при их изготовлении.

ACOM-1000

КВ усилитель мощности ACOM 1000 – один из самых достойных в мире усилителей мощности на КВ диапазонах. Выходная мощность АСОМ 1000 – не менее 1000 Вт на всех радиолюбительских диапазонах от 160 до 6 метров.

Без антенного тюнера

Усилитель осуществляет функции антенного тюнера при КСВ до 3:1, позволяя таким образом менять антенны быстрее и пользоваться ими в большей частотной полосе, экономя время настройки.

Одна выходная лампа 4CX800A (ГУ-74Б)

В усилителе использован высокопроизводительный металлокерамический тетрод производства завода "Светлана" с мощностью рассеяния анода 800 Вт (с принудительным воздушным охлаждением и сеточным управлением).

Технические характеристики усилителя мощности ACOM 1000:

  • Диапазон частот: все радиолюбительские диапазоны от 1.8 до 54 Мгц; расширения и/или изменения по запросу.
  • Выходная мощность: пиковая 1000 Вт (PEP) или в режиме нажатия, без ограничений режимов работы.
  • Интермодуляционные искажения: лучше, чем на 35 дБ ниже пикового значения номинальной мощности.
  • Фон и шумы: лучше, чем на 40 дБ ниже пикового значения номинальной мощности.

Подавление гармонических составляющих:

  • 1,8 – 29,7 МГц – лучше, чем на 50 дБ ниже пикового значения номинальной мощности.
  • 50 – 54 МГц - лучше, чем на 66 дБ ниже пикового значения номинальной мощности.

Входное и выходное волновое сопротивление:

  • номинальное значение: 50 Ом, несбалансированное, разъемы UHF (SO239);
  • входной контур: широкополосный, КСВ меньше 1,3:1 в непрерывной полосе частот 1,8-54 МГц (нет необходимости в настройке и переключении);
  • проходной КСВ меньше 1,1:1 в непрерывной полосе частот 1,8-54 МГц;
  • возможности согласования выхода: лучше, чем с КСВ 3:1 или больше при уменьшенном уровне мощности.
  • ВЧ усиление: обычно 12,5 дБ, частотная характеристика менее 1 дБ (при входном сигнале мощностью 50 – 60 Вт для номинальной выходной мощности).
  • Питающее напряжение: 170-264 В (отводы 200, 210, 220, 230 и 240 В, отводы для 100, 110 и 120 В по запросу, при допустимом отклонении +10% - 15%), 50-60 Гц, одна фаза, Потребление 2000 ВА при полной мощности.
  • Удовлетворяет требованиям техники безопасности стран ЕЭС и требованиям к параметрам электромагнитной совместимости, а также правилами Федеральной комиссии связи США (FCC) (устанавливается блок на диапазоны 6, 10 и 12 м).
  • Размеры и вес (в рабочем состоянии): 422х355x182 мм, 22 кг
  • Требования к параметрам окружающей среды при эксплуатации:
  • диапазон температур: 0...+50°С;
  • относительная влажность воздуха: до 75% при температуре +35°С;
  • высота: до 3000 м над уровнем моря, без ухудшения технических параметров.

ACOM-1011

Усилитель мощности ACOM 1011 разработан на базе широко известного ACOM 1010.

Выдающиеся эксплуатационные характеристики последнего были отмечены многими радиолюбителями во всём мире.

На чемпионате WRTC в Бразилии команды использовали усилитель ACOM 1010 и он был признан самым оптимальным как для использования в стационарных условиях, так и для DX-экспедиций.

Основные отличия между двумя усилителями:

  • В ACOM 1011 используются две лампы 4CX250B, в настоящее время производящиеся многими наиболее известными производителями радиоламп и обеспечивающие такую же выходную мощность, что и одна лампа ГУ-74Б.
  • Время прогрева ламп уменьшено до 30 секунд.
  • Панели ламп произведены по заказу ACOM и разработаны специально для установки в этом усилителе.
  • В ACOM 1011 используется новый вентилятор, разработанный и произведённый специально для ACOM на основе известных и хорошо себя зарекомендовавших вентиляторов, используемых в моделях ACOM 1000 и ACOM 2000. В нём используются аналогичные комплектующие, что обеспечивает лучшее охлаждение и более тихую работу усилителя в целом по сравнению с ACOM 1010.
  • ACOM 1011 имеет некоторые отличия как снаружи, так и внутри. Более прочная металлическая конструкция улучшает его эксплуатационные качества во время транспортировки и работы в DX-экспедициях.

ACOM-2000

Автоматический усилитель мощности ACOM 2000A – КВ усилитель, обладающий наиболее совершенными техническими характеристиками в мире усилителей, производимых для радиолюбительского применения. ACOM 2000A – первый радиолюбительский усилитель мощности, который сочетает в себе полностью автоматизированный процесс настройки, а также возможности сложного цифрового управления. Новый усилитель усовершенствованной конструкции производит максимальную разрешенную мощность во всех режимах излучения и работает на всех радиолюбительских КВ диапазонах.

Передовая технология улучшила классическую конструкцию усилителя

Полностью автоматическая настройка

Функции автоматической настройки усилителя ACOM 2000A – это настоящий прорыв в области конструирования КВ усилителей мощности. Не надо задумываться об использовании антенного тюнера при КСВ до 3:1 (2:1 в диапазоне 160 метров). Процесс согласования фактического волнового сопротивления с оптимальной нагрузкой лампы полностью автоматизирован. По времени этот процесс длится не более одной секунды и не требует большого опыта.

QSK – режим полного дуплекса

Работа в режиме полного дуплекса (QSK) основана на встроенном вакуумном реле. Последовательность переключения из режима передачи на прием обеспечивается выделенным для этого микропроцессором.

Пульт Дистанционного Управления

Возле оператора необходимо расположить только ПДУ. Сам усилитель можно разместить на расстоянии до 3 м (10 футов). Функции GLE включают в себя: статус усилителя на ЖК-дисплее, управление всеми функциями, измерение и/или наблюдение за двадцатью наиболее важными параметрами усилителя, оперативная техническая информация, предложения по поиску неисправностей, регистрация количества рабочих часов, защита паролем.

Защита

  • Производится непрерывный контроль и защита таких параметров и функций, как:
  • все напряжения и токи ламп,
  • питающие напряжения,
  • перегрев,
  • перекачка по входному сигналу,
  • недостаточное количество охлаждающего воздуха,
  • внутренние и внешние ВЧ искрения (в усилителе, антенном переключателе, тюнере или антеннах),
  • последовательность переключения с передачи на прием T/R,
  • переключение антенного реле при передаче,
  • качество согласования с антенной,
  • уровень отраженной мощности,
  • сохраненные данные,
  • бросок тока сети питающего напряжения,
  • блокировка крышки для безопасности оператора.

Технические характеристики усилителя мощности ACOM 2000A:

  • Выходная мощность: 1500-2000 Вт в режиме нажатия или в режиме SSB – без ограничения времени. Режим постоянного излучения – выходная мощность 1500 Вт - без ограничения времени при использовании дополнительного вентилятора охлаждения.
  • Диапазон частот: все радиолюбительские диапазоны от 1.8 до 24.5 МГц. Диапазон 28 МГц только с переделкой для лицензированных радиолюбителей.
  • Изменение диапазона/Настройка: первичное согласование выходных параметров производится менее, чем за 3 секунды (обычно 0,5 сек.). Процесс перестройки в ранее согласованные параметры настройки / переключение диапазона занимает менее 0,2 сек., чтобы перейти в другой участок того же диапазона, и менее 1 секунды при переходе на другой диапазон.
  • Энергонезависимое запоминающее устройство (память) настройки до 10 антенн на один сегмент частоты.
  • Мощность сигнала раскачки: обычно 50 Вт при выходной мощности 1500 Вт.
  • Входное волновое сопротивление: номинал 50 Ом. КСВ <1.5:1.
  • Допустимое отклонение выходных параметров: до КСВ 3:1 VSWR (2:1 в диапазоне 160 метров) при полной выходной мощности перед включением цепи защиты при высоком КСВ. Более высокие значения КСВ согласуются при меньшей выходной мощности.
  • Гармонические составляющие: по крайней мере на 50 дБ ниже пикового значения при мощности 1500 Вт.
  • Интермодуляционные помехи: по крайней мере на 35 дБ ниже пикового значения при мощности 1500 Вт.
  • Переключение из режима передачи на прием (T/R) и манипуляция: вакуумное реле: способно работать в режиме полного дуплекса (QSK).
  • Выходные лампы и цепи: тетроды 4CX800A/ГУ74Б (2 шт.), резистивная сетка, PI-L выходной контур с отрицательной обратной связью по ВЧ. Регулируемое напряжение экранной сетки.
  • Автоматическая регулировка уровня (ALC): управление отрицательным сеточным напряжением, максимальное значение -11 В, регулируется на задней панели.
  • Блок дистанционного управления обеспечивает наблюдение за всеми рабочими параметрами усилителя.
  • Защита: ограничение тока управляющей и экранной сетки, по броскам питания (предусмотрена возможность плавного включения), отключение по превышению значения отраженной мощности, при искрении в цепи ВЧ, доступ защищен паролем при необходимости, исправление чередования переключения режимов передачи и приема (T/R), отвод охлаждающего воздуха лампы, блокировка и устройство заземления цепи высокого напряжения при открывании крышки.
  • Диагностика неисправности: дисплей ПДУ, плюс индикаторы, плюс информационное устройство "INFO Box" на последние 12 событий. Компьютерный интерфейс (RS-232), плюс функция линии дистанционного телефонного опроса.
  • Охлаждение: Полный принудительный обдув внутри корпуса. Резиновый изолированный вентилятор.
  • Трансформатор: 3.5 КВА с ленточным сердечником Unisil-Ha.
  • Требования к источнику питающего напряжения: 100/120/200/220/240 Вольт переменного тока. 50-60 Герц. 3500 ВА, одна фаза, при полной мощности.
  • Габаритные размеры: КВ блок: длина 440 мм, высота 180 мм, глубина 450 мм, блок дистанционного управления: длина 135 мм, высота 25 мм, глубина 170 мм
  • Транспортируется в двух картонных коробках, общий вес 36 кг.
  • Отсутствие органов управления на КВ блоке, за исключением выключателя ON/OFF.

Alpha-9500

Alpha-9500 является не обычным линейныv усилителем, а кульминацией более чем 40-летнего дизайна и проектирования.

Alpha-9500 является передовой технологией, автоматическая настройка линейного усилителя легко обеспечивает 1500 Вт выходной мощности при минимальной входной мощности всего 45 Вт.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ:

Все любительские диапазоны от 1,8 - 29,7 МГц

  • Выходная мощность: 1500 Вт минимум, на всех диапазонах и видах излучения
  • IM 3-го порядка: < -30 дБн
  • КСВ допускается: 3:1
  • Мощность подводимая: 45-60 Вт для достижения номинальной полной мощности
  • Лампа: одна 3CX1500/8877 - триод высокой мощности и производительности с мощностью рассеивания 1500 Вт обеспечивает заявленную мощность на всех диапазонах частот на всех режимах, на всех рабочих циклах.
  • Охлаждение: Принудительное воздушное от двух вентиляторов
  • Антенные выходы: стандартно поставляется с 4-мя SO-239 разъемами, но может быть изменен на тип N на задней панели, удалив 4 винта.
  • Выбор антенны: внутренний антенный 4-портовый коммутатор с 1 или 2 выходами на диапазон
  • Калиброванный Ваттметр: Bruene Ваттметр позволяет одновременно измерять прямую и обратную мощность и отображать эту информацию в удобном для чтения на гистограмме передней панели. Он также использует информацию, чтобы одновременно контролировать усиления усилителя.
  • Механизмы защиты: высоковольтная блокировка и блокировки по питанию.
  • Обходной режим: Есть два выключателя питания "ON" на передней панели ALPHA-9500.
  • "ON1" активизирует Ваттметр и антенный переключатель без отключения питания самого усилителя, и устанавливает усилитель в режим "обход".
  • Сам усилитель включается кнопкой "ON2".
  • Вход: Входит в стандартную комплектацию разъем SO-239 BIRD, но может быть изменен на BIRD N типа
  • Настройка/переключение диапазонов: Автоматическое, плюс ручное управление
  • Питание: 100, 120, 200, 220, 240 В переменного тока, 50/60 Гц, выбор автоматический. При 240 В переменного тока усилитель потребляет до 20 ампер.
  • Интерфейс: последовательный порт и USB. Полная функция дистанционного управления.
  • Защита: защита от всех распространенных неисправностей.
  • Дисплей: дисплей отображает гистограммы мощности, КСВ, тока сетки, анодного тока, анодного напряжения и усиления - все одновременно. Цифровая приборная панель может отображать входную мощность, анодный ток, анодное напряжение, ток сетки, КСВ, напряжение накала и PEP выход.
  • Tx/Rx переключение: две фирменных Gigavac вакуумных реле позволяют работать QSK на QRO.
  • Выходная мощность: 1500 Вт.
  • Вес: 95 фунтов
  • Размеры: 17.5"W X 7.5"H X 19,75"D

Ameritron AL-1500

Ameritron AL-1500 является одним из мощнейших линейных усилителей, охватывающих все ВЧ и WARC диапазоны.

В нем используется ручная настройка усилителя, который спроектирован на одной керамической лампе 3CX1500/8877 и имеет КПД не менее 62-65% .

При входной мощности 65 Вт он выдает установленную законом максимальную мощность с большим запасом, до 2500 ватт.

Усилитель имеет трансформатор Hypersil ®, два прибора с подсветкой, регулируемый ALC, регулировку времени задержки, защиту по току и многое другое.

Цена (ориентировочно в РФ) = $3650

Ameritron AL-572X

Усилитель Ameritron AL-572, выполнен на четырёх лампах 572B по схеме с общей сеткой. В усилителе Ameritron AL-572, применяется нейтрализация проходной емкости ламп, улучшающая характеристики и стабильность работы на ВЧ диапазонах. Лампы установлены вертикально, что значительно снижает опасность межэлектродных замыканий

Для согласования входа усилителя Ameritron AL-572, с выходом передатчика на входе установлены раздельные П-контуры для каждого из рабочих диапазонов. Применение настроенного входа выравнивает нагрузку на выходной каскад трансивера и позволяет получить КСВ близкий к 1 на всех диапазонах. Возможна дополнительная подстройка контуров сквозь отверстия в задней панели усилителя.

Источник анодного питания собран по трансформаторной схеме с удвоением напряжения и использует электролитические конденсаторы большой емкости. Анодный трансформатор намотан на сборном стальном сердечнике из пластин с устойчивым к высокой температуре силиконовым покрытием, обеспечивающим высокую удельную мощность при небольшом весе. Анодное напряжение холостого хода 2900 вольт, при полной нагрузке около 2500 вольт. Для снижения температуры внутри корпуса Ameritron AL-572, использован низкооборотный вентилятор компьютерного типа, обеспечивающий циркуляцию воздуха при невысоком уровне шума.

Детали выходного контура Ameritron AL-572 (бескаркасные катушки из толстого провода, анодный конденсатор с керамическими изоляторами и большим зазором между пластинами, переключатель диапазонов на керамическом диэлектрике) обеспечивают надежную работу и высокий КПД колебательной системы. Ручки конденсаторов переменной емкости снабжены верньерами с замедлением и индикацией положения роторов.

Усилитель Ameritron AL-572, также имеет систему ALC, переключатель режимов работы и обхода, индикацию работы на передачу и приборы для измерения напряжения источника анодного питания/тока анодов и величины сеточного тока. Оба прибора измерения имеют подсветку. Для работы QSK возможна установка дополнительного модуля QSK-5.

Цена (ориентировочно в РФ) = $2240

Технические характеристики

  • Пиковая выходная мощность: в режиме SSB 1300 Ватт, в режиме CW 1000 Ватт
  • Мощность возбуждения от трансивера 50-70 Ватт
  • Лампы: 4 лампы 572B с нейтрализацией в включении с общей сеткой
  • Питание: от сети 220 вольт
  • Габариты: 210x370x394 мм
  • Вес: 18 кг
  • Производcтво: США

Ameritron AL-800X

Ламповый усилитель мощности для КВ-трансиверов

Диапазон рабочих частот: от 1 до 30 МГц

Выходная мощность: 1250 Ватт (пиковая)

Построен на лампе 3CX800A7

Цена (ориентировочно в РФ) = $2900

Ameritron AL-80BX

Линейный усилитель мощности Ameritron AL-80B выполнен на лампе 3-500Z по схеме с общей сеткой. Лампа установлена вертикально, что значительно снижает опасность межэлектродных замыканий.

Для согласования входа усилителя Ameritron AL-80B, с выходом передатчика на входе установлены раздельные П-контуры для каждого из рабочих диапазонов. Применение настроенного входа выравнивает нагрузку на выходной каскад трансивера и позволяет получить КСВ близкий к 1 на всех диапазонах. Возможна дополнительная подстройка контуров сквозь отверстия в задней панели усилителя.

Источник анодного питания усилителя Ameritron AL-80B, собран по трансформаторной схеме с удвоением напряжения и использует электролитические конденсаторы большой емкости. Анодный трансформатор намотан на сборном стальном сердечнике из пластин с устойчивым к высокой температуре силиконовым покрытием, обеспечивающим высокую удельную мощность при небольшом весе. Анодное напряжение холостого хода 3100 вольт, при полной нагрузке около 2700 вольт. Для снижения температуры внутри корпуса использован низкооборотный вентилятор компьютерного типа, обеспечивает циркуляцию воздуха при невысоком уровне шума.

Детали выходного контура усилителя Ameritron AL-80B (бескаркасные катушки из толстого провода, анодный конденсатор с керамическими изоляторами и большим зазором между пластинами, переключатель диапазонов на керамическом диэлектрике) обеспечивают надежную работу и высокий КПД колебательной системы. Ручки конденсаторов переменной емкости снабжены верньерами с замедлением и индикацией положения роторов.

Усилитель Ameritron AL-80B, также имеет систему ALC, переключатель режимов работы и обхода, индикацию работы на передачу и приборы для измерения напряжения источника анодного питания/тока анодов и величины сеточного тока. Для работы QSK возможна установка дополнительного модуля QSK-5.

Цена (ориентировочно в РФ) = $1990

Технические характеристики

  • Рабочие диапазоны: 10-160 метров, включая WARC
  • Пиковая выходная мощность: в режиме SSB 1000 Ватт, в режиме CW 800 Ватт
  • Мощность возбуждения от трансивера 85-100 Ватт
  • Лампы: Лампа 3-500Z с нейтрализацией в включении с общей сеткой
  • Входное и выходное сопротивление: 50 Ом
  • Питание: от сети 220 вольт
  • Габариты: 210x370x394 мм
  • Вес: 22 кг
  • Производcтво: США

Ameritron AL-811

Линейный усилитель мощности Ameritron AL-811 HX выполнен на четырех лампах 811А (полный аналог - лампа Г-811) по схеме с общей сеткой. Лампы установлены вертикально, что значительно снижает опасность межэлектродных замыканий.

Для согласования входа усилителя с выходом передатчика на входе установлены раздельные П-контуры для каждого из рабочих диапазонов. Применение настроенного входа выравнивает нагрузку на выходной каскад трансивера и позволяет получить КСВ близкий к 1 на всех диапазонах. Возможна дополнительная подстройка контуров сквозь отверстия в задней панели усилителя.

Источник анодного питания собран по трансформаторной мостовой схеме и использует электролитические конденсаторы большой емкости. Анодный трансформатор намотан на сборном стальном сердечнике из пластин с устойчивым к высокой температуре силиконовым покрытием, обеспечивающим высокую удельную мощность при небольшом весе (8 кг.). Анодное напряжение холостого хода 1700 вольт, при полной нагрузке около 1500 вольт. Для снижения температуры внутри корпуса использован низкооборотный вентилятор компьютерного типа, обеспечивающий циркуляцию воздуха при невысоком уровне шума.

Усилитель также имеет систему ALC, переключатель режимов работы и обхода, индикацию работы на передачу и приборы для измерения напряжения источника анодного питания/тока анодов и величины сеточного тока. Для работы QSK возможна установка дополнительного модуля QSK-5.

Цена (ориентировочно в РФ) = $1200

Технические характеристики

  • Пиковая выходная мощность - в режиме SSB 800 Ватт, в режиме CW 600 Ватт (мощность возбуждения от трансивера 50-70 Ватт)
  • Входное и выходное сопротивление - 50 Ом
  • Рабочие диапазоны - 10-160 метров, включая WARC
  • 4 лампы 811А в включении с общей сеткой
  • Регулируемый выход ALC
  • Напряжение питающей сети 240 вольт, возможно коммутировать
  • отводы для питания от сети 100/110/120/210/220/230 вольт
  • Масса 15 кг

Ameritron AL-82X

Линейный усилитель мощности Ameritron AL-82X выполнен на двух лампах 3-500Z по схеме с общей сеткой. В усилителе Ameritron AL-82, применяется нейтрализация проходной емкости ламп, улучшающая характеристики и стабильность работы на ВЧ диапазонах. Лампы в усилителе Ameritron AL-82 установлены вертикально, что значительно снижает опасность межэлектродных замыканий.

Для согласования входа усилителя Ameritron AL-82X, с выходом передатчика на входе установлены раздельные П-контуры для каждого из рабочих диапазонов. Применение настроенного входа усилитея Ameritron AL-82 выравнивает нагрузку на выходной каскад трансивера и позволяет получить КСВ близкий к 1 на всех диапазонах. Возможна дополнительная подстройка контуров сквозь отверстия в задней панели усилителя.

Источник анодного питания усилителя Ameritron AL-82 собран по трансформаторной схеме с удвоением напряжения и использует электролитические конденсаторы большой емкости. Анодный трансформатор намотан на сборном стальном сердечнике из пластин с устойчивым к высокой температуре силиконовым покрытием, обеспечивающим высокую удельную мощность при небольшом весе. Анодное напряжение холостого хода 3800 вольт, при полной нагрузке около 3300 вольт. Для снижения температуры внутри корпуса усилителя Ameritron AL-82 использован низкооборотный вентилятор компьютерного типа, обеспечивающий циркуляцию воздуха при невысоком уровне шума.

Детали выходного контура (бескаркасные катушки из толстого провода, анодный конденсатор с керамическими изоляторами и большим зазором между пластинами, переключатель диапазонов на керамическом диэлектрике) обеспечивают надежную работу и высокий КПД колебательной системы. Ручки конденсаторов переменной емкости снабжены верньерами с замедлением и индикацией положения роторов.

Усилитель Ameritron AL-82X, также имеет систему ALC, переключатель режимов работы и обхода, индикацию работы на передачу и приборы для измерения напряжения источника анодного питания/тока анодов и величины сеточного тока. Оба прибора измерения имеют подсветку. Для работы QSK возможна установка дополнительного модуля QSK-5.

Цена (ориентировочно в РФ) = $3000

Технические характеристики усилителя Ameritron AL-82X

  • Рабочие диапазоны 10-160 метров, включая WARC
  • Пиковая выходная мощность: в режиме SSB 1800 Ватт, в режиме CW 1500 Ватт
  • Мощность возбуждения от трансивера 100 Ватт
  • Лампы: 2 лампы лампы 3-500Z с нейтрализацией в включении с общей сеткой
  • Входное и выходное сопротивление 50 Ом
  • Питание от сети 220 вольт
  • Габариты 250x432x470 мм
  • Вес 35 кг
  • Производство США

Ameritron ALS-1300

Фирма Ameritron предлагает свой новый твёрдотельный усилитель ALS-1300.

Выходная мощность усилителя 1200Вт в диапазоне частот 1.5 - 22 мГц.

Усилитель не требует времени для перестройки, в качестве выходных транзисторов используются FET 8шт MRF-150.

В усилителе используется вентилятор, скорость вращения которого регулируется от температурных сенсоров для обеспечения минимального шума.

Вместе с усилителем ALS-1300 можно использовать дистанционный пульт ALS-500RC

Ameritron ALS-500M

В усилителе применяются четыре мощных биполярных транзистора 2SC2879

Усилитель выполнен без применения вакуумных ламп, поэтому он не требует предварительного прогрева

Усилитель не нужно настраивать. Переключение диапазонов от 1.5 до 29 мГц осуществляется одной ручкой

В усилителе отслеживается сопротивление нагрузки и в случае его отклонения более допустимой нормы включается «обход»

В усилителе имеется встроенный индикатор потребляемого тока, позволяющий контролировать ток коллектора выходных транзисторов

Для того, чтобы работать «в обход» усилителя, не требуется отсоединять его. Достаточно только переключить его в положение «off»

Вес усилителя всего 3.9 кг при размерах 360х90х230 мм

При работе усилителя в стационарном режиме рекомендуется использовать источник питания с выходным напряжением 13.8 В и рабочим током не менее 80 А.

Цена (ориентировочно в РФ) = $1050

Технические характеристики усилителя мощности ASL-500M :

  • Диапазон частот: 1.5 - 30 мГц
  • Выходная мощность: пиковая 500 Вт (PEP) или 400 Вт в режиме CW
  • Мощность сигнала раскачки: обычно 60-70 Вт
  • Питающее напряжение: 13.8 В, потребление 80 А
  • Подавление гармонических составляющих: 1,8 – 8 МГц – лучше, чем на 60 дБ ниже пикового значения номинальной мощности, 9 – 30 МГц – лучше, чем на 70 дБ ниже пикового значения номинальной мощности
  • При работе усилителя в стационарном режиме рекомендуется использовать источник питания с максимальным выходным током не менее 80А.

Ameritron ALS-600

Никакой настройки, никакой суеты, никаких волнений – просто включите и работайте

Включает выходную мощность 600 Вт, непрерывный частотный диапазон 1,5-22 МГц, мгновенное переключение диапазонов, не требует времени на прогрев, без опасных для детей ламп, защита по максимуму КСВ, совершенно бесшумный, очень компактный.

Революционный усилитель AMERITRON ALS-600 – это единственный линейный усилитель в любительских радиостанциях, в котором применены четыре надежных радиочастотных мощных TMOS полевых транзистора – обеспечивает непревзойденное полупроводниковое качество и не требует настройки. В цену входят ненастраиваемый усилитель на полевых транзисторах и источник питания от сети 120/220 В переменного тока, 50/60 Гц для работы в домашних условиях.

Вы получаете мгновенное переключение диапазонов, не требуется настройка, не требуется время для прогрева, никакой суеты! Усилитель ALS-600 обеспечивает максимальную выходную мощность огибающей 600 Вт и мощность 500 Вт в режиме CW в непрерывном частотном диапазоне от 1,5 до 22 МГц

Усилитель ALS-600 совершенно бесшумный. Низкоскоростной вентилятор малого объема настолько бесшумный, что трудно обнаружить его присутствие, в отличие от шумных устройств обдува, используемых в других усилителях. Усилитель ALS-600 имеет малые габариты: 152x241x305 мм – он занимает меньше места, чем ваша радиостанция! Весит всего 5,7 кг.

Двухстрелочный измеритель КСВ и мощности с подсветкой позволяет считывать значения КСВ, максимальной мощности падающей и отраженной волны одновременно. Переключатель Operate/Standby (работа/ожидание) позволяет работать в маломощном режиме, но, при необходимости, вы можете мгновенно переключиться в режим работы с максимальной мощностью.

Вы получаете возможность управления системой ALC с передней панели! Эта уникальная система AMERITRON позволяет регулировать выходную мощность на удобном индикаторе передней панели. Кроме того, вы получаете светодиодные индикаторы передачи, ALC и КСВ на передней панели. Гнездо для вывода напряжения 12 В постоянного тока позволяет запитывать слаботочные принадлежности. Наслаждайтесь 600-ваттной мощностью ненастраиваемого полупроводникового усилителя. Пара гнезд RJ45 для подключения интенфейса дистанционного управления на этом усилителе позволяет управлять усилителем ALS-600 либо вручную с помощью компактного блока дистанционного управления ALS-500RC, либо автоматически с помощью автоматического переключателя диапазонов ARI-500. Автоматический переключатель диапазонов считывает данные о диапазоне с вашего трансивера и автоматически изменяет диапазоны усилителя ALS-600 при изменении диапазонов на трансивере.

Цена (ориентировочно в РФ) = $1780

Expert 1K-FA

Полностью автоматический транзисторный линейный усилитель мощностью 1 КВт.

Встроенный блок питания и автоматический антенный тюнер. Размеры: 28х32х14 см (включая разъёмы подключения).

Вес около 20 кг.

В усилителе Expert 1K-FA используется два процессора, один из которых предназначен для автоматической настройки выходного П-контура. (Система С.А.Т.s) Более 13000 элементов программного обеспечения обеспечивают уникальную совокупность технических характеристик, отсутствующую в других моделях.

Возможность простого подключения ко всем моделям трансиверов Icom, Yaesu, Kenwood, автоматический антенный тюнер, контроль характеристик антенны, немедленный выход в эфир. Сходные результаты при работе с моделями других компаний и самодельным оборудованием. Функции оператора ограничиваются вращением ручки настройки частоты в трансивере.

От 1,8 МГц до 50 МГц включая WARC диапазоны. Полностью транзисторное исполнение. 1 КВт PEP в режиме SSB (паспортное значение). 900 Вт в режиме CW (паспортное значение) 700 Вт PEP в диапазоне 50 МГц (паспортное значение).

Автоматический выбор полной/половинной мощности по команде оператора в режимах CW и SSB, для цифровых видов работы и обеспечения автоматической защиты усилителя. Не требует времени для разогрева.

Усилительные элементы не подвержены старению (использованы КМОП транзисторы). Встроенный автоматический антенный тюнер. Возможно согласование антенн до значений КСВ 3:1 на КВ, и 2.5:1 на 6 метрах. Коммутация до 4 антенн (разъемы SO239). Переключение диапазонов, антенн и все подстройки осуществляются за 10 миллисекунд. При работе только с трансивера подстройки, коммутация диапазонов и антенн осуществляются в режиме «ожидание». Наличие двух входов. Использованы разъемы SO 239.

Мощность раскачки 20 Вт.

Непрерывный контроль температуры, перегрузок по току и напряжению, уровня КСВ, уровня отраженной мощности, максимального РЧ напряжения тюнера, «перекачки» входной мощности, дисбаланса усилительных каскадов. Режим полного дуплекса (QSK). Малый шум при работе.Усилитель и трансивер могут включаться и выключаться независимо. На большом ЖК дисплее отображается большое количество информации.

Подключение через порт RS 232 для управления с помощью ПК. Для удобства переноски усилитель помещается в небольшую сумку. Возможна работа в «полевом дне» и DX-экспедициях.

BLA 1000

RM BLA-1000 новый транзисторный усилитель, с выходной мощностью до 1000Вт в котором реализованы все самые передовые достижения в усилителя-строении. Выходной каскад усилителя выполнен на двух супермощных полевых (MOSFET) транзисторах MRF-157. 2-х тактная мостовая схема усиления (типа Push-Pull), работающая в режиме АВ2, обеспечивает высокое усиление и хороший КПД усилителя при сохранении высокой линейности.

Для удобства перекрытия всех диапазонов работы на задней панели усилителя предусмотрено 2 антенных порта. К примеру, на один порт можно подключать антенны ВЧ диапазонов, а на второй – антенны НЧ-диапазонов.

Для контроля линейности работы усилителя на задней панели присутствует вход ALC. Реализована возможность как автоматического управления уровнем ALC, так и от трансивера. Параметры ALC можно настроить в вручную 2-я резисторами. Время отпускания реле передачи (RX-delay) может настраиваться в диапазоне 0…2,5 секунды с шагом 10 мс.

Переключение режима «Приём/Передача» может осуществляться как от трансивера, так и автоматически (Int. VOX). Для этого на задней панели усилителя присутствует RC-разъём – «PTT».

Питается усилитель от своего встроенного импульсного блока питания. Большая выходная мощность усилителя получается благодаря питанию транзисторов высоким напряжением - 48 Вольт. При этом потребляемый ток в пике сигнала может достигать 50 Ампер.

Одной из интересных особенностей этого усилителя является его возможность работы в полностью автоматическом режиме. В этом режиме не нужно переключать не только режимом «ПриёмПередача», но и диапазон работы усилителя. Встроенный в микропроцессор частотомер сам определит частоту передачи и подберёт нужный фильтр низкой частоты. Особенно это функция будет полезна для применения усилителя в «не обслуживаемых зонах» или «закрытых помещениях» промышленных структур радиосвязи.

Цена (ориентировочно в РФ) = $4590

Технические характеристики усилителя мощности RM BLA-1000

  • Частотный диапазон 1.5-30 и 48-55 МГц
  • Напряжение питания 220-240 Вольт; 15.5 А
  • Входная мощность 10-100 Ватт
  • Выходная мощность 1000 Ватт
  • Импеданс Вход/Выход 50 Ом
  • Габаритные размеры 495 х 230 х 462 мм
  • Вес 30 кг

BLA 350

Новый, недорогой усилитель RM BLA-350. Идеальное решение для начинающего или среднего радиолюбителя, решившего за небольшие деньги усилить сигнал своего трансивера или защитить выходной каскад. За счёт встроенного мощного блока питания, усилитель занимает мало места на столе.

Выходной каскад усилителя выполнен на двух мощных полевых (MOSFET) транзисторах SD2941. 2-х тактная мостовая схема усиления (типа Push-Pull), работающая в режиме АВ2, обеспечивает высокое усиление и хороший КПД усилителя при сохранении высокой линейности. Дополнительную чистоту выходного сигнала обеспечивают 7 диапазонных фильтров низкой частоты 7-ого порядка, что является важным параметром для усилителей базового исполнения.

Благодаря микропроцессорному управлению осуществляется полная автоматизация управления режимами работы усилителя и реализован контроль температуры, КСВ и входной мощности. Возможна гибкая настройка параметров защиты и сигнализации при превышении пороговых значений.

Управление переключением режима «ПриёмПередача» может осуществляться как от трансивера, так и автоматически (Int. VOX). Для этого на задней панели усилителя присутствует RC-разъём – «PTT».

Одной из интересных особенностей этого усилителя является его возможность работы в полностью автоматическом режиме. В этом режиме не нужно переключать не только режимом «Приём/Передача», но и диапазон работы усилителя. Встроенный в микропроцессор частотомер сам определит частоту передачи и подберёт нужный фильтр низкой частоты. Особенно это функция будет полезна для применения усилителя в «не обслуживаемых зонах» или «закрытых помещениях» промышленных структур радиосвязи.

Цена (ориентировочно в РФ) = $1090

Технические характеристики усилителя мощности RM BLA-350

  • Частотный диапазон 1.5-30 МГц (Включая WARC - диапазоны)
  • Виды модуляции AM/FM/SSB/CW/DIGI
  • Напряжение питания 220-240 Вольт; 8 А
  • Входная мощность 1-10 Ватт
  • Выходная мощность 350 Ватт
  • Импеданс Вход/Выход 50 Ом
  • Габаритные размеры 155 х 355 х 270 мм
  • Вес 13 кг

Elecraft KPA-500

Усилитель мощности предназначен для работы на всех радиолюбительских КВ диапазонах от 160 до 6 метров (включая диапазоны WARC) всеми режимами работы. KPA-500 автоматически настраивается на частоту вашего трансивера.

Полностью твёрдотельный усилитель мощностью 500 Вт на мощных FET транзисторах, имеет те же размеры, что и трансивер Elecraft K3 и идеально вписывается в линейку аппаратов этой фирмы.

Усилитель имеет буквенно-цифровой дисплей, яркий светодиодный индикатор и надежный мощный встроенный источник питания. Аппарат работает с любым трансивером, использующем заземляющийся выход РТТ. При перекачке или повышении КСВ автоматически уменьшается мощность на 2.5 дБ, при устранении проблемы происходит возврат к номиналу.

Усилитель обеспечивает сверхскоростной бесшумный QSK с помощью переключателя на мощных PIN-диодах. В устройстве установлен шестискоростной управляемый температурой вентилятор. При использовании опционального кабеля KPAK3AUX обеспечивается расширенная интеграция с трансивером К3:

  • кнопки ручного управления на панели КРА500 управляют диапазонами и уровнем раскачки на К3;
  • данные о переключении диапазонов передаются с К3 до начала передачи;
  • РТТ передается по кабелю, отдельное управление не требуется;
  • К3 определяет текущее состояние усилителя и регулирует уровень возбуждения в соответствии с одним из двух состояний памяти на каждом диапазоне.

При подключенном интернете происходит автоматическое определение наличия новых версий прошивки с сервера компании через порт RS232.

HLA-150

Цена (ориентировочно в РФ) = $520

  • Входная мощность: 1 - 8 Вт.
  • Выходная мощность: 150 Вт CW или 200 Вт PEP в SSB.
  • Напряжение питания: 13,8 В.
  • Максимальный потребляемый ток: до 24 A.
  • Размеры: 170x225x62 мм, вес 1.8 кг.

HLA-300

Усилитель имеет микропроцессорное управление, диапазон частот 1,5-30 МГц, светодиодные индикаторы выходной мощности и рабочего диапазона, автоматическое переключение TX/RX. Переключение диапазонов можно осуществлять автоматически или вручную. В усилителе имеются диапазонные фильтра по выходу которые переключаются вручную при смене диапазона.

Система защиты в случае неполадок усилителя или антенно-фидерной системы, увеличения уровня побочных излучений автоматически отключит усилитель и/или подключит трансивер к антенне непосредственно (режим «обход»). Для ручного включения режима «обход» достаточно выключить питание усилителя.

Входная мощность 5 - 15 Вт.

Выходная мощность 300 Вт CW или 400 Вт PEP в SSB.

Напряжение питания 13,8 В.

Максимальный потребляемый ток до 45 A.

Размеры 450x190x80 мм, вес 3 кг. Цена (ориентировочно в РФ) = $750

OM Power OM 1500

Линейный усилитель мощности для работы на всех любительских диапазонах от 1,8 до 29 МГц (включая WARC-диапазоны) + 50 МГц всеми видами модуляции. Оснащен керамическим тетродом ГС-23Б.

Технические характеристики:

Диапазон рабочих частот: любительские диапазоны от 1.8 до 29.7 МГц, включая WARC-диапазоны + 50 МГц.

Выходная мощность: 1500+ Вт в режимах SSB и CW на ВЧ диапазонах, 1000 Вт в режимах SSB и CW на 50 МГц, 1000+ Вт в режиме RTTY

Подводимая мощность: стандартно от 40 до 60 Вт для полной выходной мощности.

Входное сопротивление: 50 Ом при КСВ < 1.5: 1

Усиление: 14 dB, Выходное сопротивление: 50 Ом, Максимальный КСВ: 2:1

Защита от повышения КСВ: автоматический переход в режим STANDBY при отраженной мощности более 250 Вт

Интермодуляционные искажения: 32 dB от номинальной выходной мощности.

Подавление гармоник: < -50 дБ относительно мощности несущей.

Лампа: Керамический тетрод ГС-23Б. Охлаждение: Центробежный вентилятор.

Источник питания: 1 x 210, 220, 230 В - 50 Гц. Трансформаторы: 1 тороидальный трансформатор 2,3 КВА

Особенности:

Антенный переключатель для трех антенн

Память для ошибок и предупреждений - простое обслуживание

Автоматическая настройка анодного тока (BIAS) – не нужна регулировка после замены лампы

Автоматическая регулировка скорости вращения вентилятора в зависимости от температуры

Full QSK с бесшумным реле

Наименьшие размеры и вес среди всех усилителей 1500 Вт, присутствующих на рынке

Размеры (ШхВхГ): 390 x 195 x 370 мм, Вес: 22 кг

OM Power OM 2500 HF

Тетрод ГУ84б российского производства используется для получения выходной мощности до 2700 Ватт.

В усилителе используется тетрод ГУ84Б по схеме с заземленным катодом (входной сигнал подается на управляющую сетку). Усилитель показывает прекрасную линейность стабилизации напряжения смещения управляющей сетки и напряжения экранной сетки. Входной сигнал подается на управляющую сетку с помощью широкополосного трансформатора с входным сопротивлением 50 Ом. Такая схема входа обеспечивает приемлемое значение КСВ (менее 1,5:1) на всех КВ диапазонах.

Выходной каскад усилителя представляет собой Pi-L контур. Переменный конденсатор на керамических изоляторах для настройки контура и согласования нагрузки разделён на две части и сконструирован специально для этого усилителя. Это позволяет точно настраивать усилитель и легко возвращаться к ранее настроенным положениям после смены диапазона.

Высокое анодное напряжение состоит из 8 источников напряжений по 300В/2А. Каждый из источников имеет собственный выпрямитель и фильтр. В цепи анодного напряжения применены предохранительные резисторы для защиты усилителя от перегрузки. Сеточное напряжение стабилизируется схемой из полевых МОП транзисторов IRF830 и составляет 360В/100мА. Напряжение управляющей сетки -120В стабилизируется стабилитронами.

Основные технические характеристики усилителя мощности OM2500 HF

  • Выходная мощность: 2500 Вт в режимах CW и SSB, 2000 Вт в режимах RTTY, AM и FM
  • < 2.0: 1 входное - 50 Ом при КСВ < 1,5:1
  • ВЧ усиление: не менее 16 дБ
  • Узлы защиты: при повышении КСВ, анодного и сеточного токов, при неправильной настройке усилителя обеспечение мягкого старта для защиты предохранителей блокирование включения опасных напряжений при снятых крышках усилителя
  • Размеры и вес (в рабочем состоянии): 485х200x455 мм, 38 кг

OM Power OM2000 HF

Усилитель мощности предназначен для работы на всех КВ диапазонах от 1,8 до 29 МГц (включая диапазоны WARC) всеми режимами работы.

Высокочастотный блок:

В усилителе использован тетрод ГУ-77Б по схеме с заземленным катодом с подачей возбуждения на управляющую сетку. Усилитель имеет прекрасную линейность, поскольку смещение управляющей сетки и напряжение экранной сетки хорошо стабилизированы. Входной сигнал подается на управляющую сетку через широкополосное согласующее устройство со входным сопротивлением 50 Ом. Такое решение обеспечивает согласование входа усилителя с КСВ не хуже 1.5:1 на любом КВ диапазоне.

Узел питания

С помощью узла, выполненного на реле и мощных резисторах, осуществляется мягкий запуск мощного выпрямителя. Высоковольтный блок составлен из восьми секций, обеспечивающих по 350 вольт при токе 2 ампера, каждая из которых имеет собственный выпрямитель и фильтр. В цепи анодного напряжения установлены предохранительные резисторы для защиты усилителя от перегрузки.

Защита усилителя

Основные технические характеристики усилителя мощности OM2000 HF

  • Диапазон частот: все радиолюбительские диапазоны от 1.8 до 29.7 Мгц;
  • Выходная мощность, не менее: 2000 Вт в режимах CW и SSB, 1500 Вт в режимах RTTY, AM и FM
  • Интермодуляционные искажения: не более -32 дБ от пикового значения номинальной мощности.
  • Подавление гармонических составляющих: более 50 дБ от пикового значения номинальной мощности.
  • Волновое сопротивление: выходное - 50 Ом, на ассиметричную нагрузку, при КСВ < 2.0: 1 входное - 50 Ом при КСВ < 1,5:1
  • ВЧ усиление: не менее 17 дБ
  • Питающее напряжение: 230В – 50Гц, одна или две фазы
  • Трансформаторы: 2 тороидальных трансформатора, 2КВА каждый
  • Размеры и вес (в рабочем состоянии): 485х200x455 мм, 37 кг

OM Power OM2500 A

Усилитель мощности предназначен для работы на всех КВ диапазонах от 1,8 до 29 МГц (включая диапазоны WARC) всеми режимами работы. OM2500 A автоматически настраивается на частоту трансивера.

Высокочастотный блок

В усилителе использован тетрод ГУ-84Б по схеме с заземленным катодом с подачей возбуждения на управляющую сетку. Усилитель имеет прекрасную линейность, поскольку смещение управляющей сетки и напряжение экранной сетки хорошо стабилизированы. Входной сигнал подается на управляющую сетку через широкополосное согласующее устройство со входным сопротивлением 50 Ом. Такое решение обеспечивает согласование входа усилителя с КСВ не хуже 1.5:1 на любом КВ диапазоне.

На выходе усилителя включен Pi-L контур. Каждый из переменных конденсаторов, предназначенных для настройки контура и нагрузки, выполнен на керамических изоляторах и разделен на две секции. Такое решение позволяет точнее настраивать усилитель и легко возвращаться к прежним настройкам после смены диапазона.

Узел питания

Питание усилителя осуществляют два двухкиловаттных тороидальных трансформатора.

С помощью узла, выполненного на реле и мощных резисторах, осуществляется мягкий запуск мощного выпрямителя. Высоковольтный блок составлен из восьми секций, обеспечивающих по 420 вольт при токе 2 ампера, каждая из которых имеет собственный выпрямитель и фильтр. В цепи анодного напряжения установлены предохранительные резисторы для защиты усилителя от перегрузки.

Напряжение для экранной сетки обеспечивается параллельным стабилизатором, собранном на высоковольтных транзисторах типа BU508, который обеспечивает напряжение 360 вольт при токе до 100 мА. Смещение для управляющей сетки (-120 вольт) также стабилизировано.

Защита усилителя

В устройстве обеспечивается непрерывный контроль и защита всех цепей при нарушениях в работе усилителя. Узел защиты расположен на плате контроля, установленной в субпанели.

Основные технические характеристики усилителя мощности OM2500 A

  • Диапазон частот: все радиолюбительские диапазоны от 1.8 до 29.7 Мгц;
  • Выходная мощность, не менее: 2500 Вт в режимах CW и SSB, 2000 Вт в режимах RTTY, AM и FM
  • Интермодуляционные искажения: не более -32 дБ от пикового значения номинальной мощности.
  • Подавление гармонических составляющих: более 50 дБ от пикового значения номинальной мощности.
  • Волновое сопротивление: выходное - 50 Ом, на ассиметричную нагрузку, при КСВ < 2.0: 1, входное - 50 Ом при КСВ < 1,5:1
  • ВЧ усиление: не менее 17 дБ
  • Ручная или автоматическая настройка
  • Скорость настройки на одном и том же диапазоне: < 0.5 сек.
  • Скорость настройки при перестройке на другой диапазон: < 3 сек.
  • Питающее напряжение: 230В – 50Гц, одна или две фазы. Трансформаторы: 2 тороидальных трансформатора, 2КВА каждый
  • Узлы защиты: при повышении КСВ, анодного и сеточного токов, при неправильной настройке усилителя обеспечение мягкого старта для защиты предохранителей, блокирование включения опасных напряжений при снятых крышках усилителя
  • Размеры и вес (в рабочем состоянии): 485х200x455 мм, 40 кг

OM Power OM3500 HF

Усилитель мощности OM3500 HF предназначен для работы на всех КВ диапазонах от 1,8 до 29 МГц (включая диапазоны WARC) всеми режимами работы. В усилителе установлен керамический тетрод ГУ78Б.

В усилителе используется тетрод ГУ78Б по схеме с заземленным катодом (входной сигнал подается на управляющую сетку). Усилитель показывает прекрасную линейность стабилизации напряжения смещения управляющей сетки и напряжения экранной сетки. Входной сигнал подается на управляющую сетку с помощью широкополосного трансформатора с входным сопротивлением 50 Ом. Такая схема входа обеспечивает приемлемое значение КСВ (менее 1,5:1) на всех КВ диапазонах. Выходной каскад усилителя представляет собой Pi-L контур. Переменный конденсатор на керамических изоляторах для настройки контура и согласования нагрузки разделён на две части и сконструирован специально для этого усилителя. Это позволяет точно настраивать усилитель и легко возвращаться к ранее настроенным положениям после смены диапазона.

Блок питания усилителя состоит из двух 2КВА тороидальных трансформаторов. Режим плавного включения происходит с помощью реле и резисторов.

Защита усилителя:

Производится постоянный контроль и защита по анодному и сеточному напряжениям и токам при неправильной настройке усилителя, реализован режим плавного включения для защиты предохранителей.

Технические характеристики усилителя мощности OM3500 HF:

  • Диапазон частот: все радиолюбительские диапазоны от 1.8 до 29.7 Мгц;
  • Выходная мощность: 3500 Вт в режимах CW и SSB, 3000 Вт в режимах RTTY, AM и FM
  • Интермодуляционные искажения: лучше, чем на 36 дБ ниже пикового значения номинальной мощности.
  • Подавление гармонических составляющих: лучше, чем на 55 дБ ниже пикового значения номинальной мощности.
  • Волновое сопротивление: выходное - 50 Ом, на ассиметричную нагрузку, входное - 50 Ом при КСВ < 1,5:1
  • ВЧ усиление: обычно 17 дБ
  • Питающее напряжение:2 х 230В – 50Гц, одна или две фазы
  • Трансформаторы: 2 тороидальных трансформатора, 2.5 КВА каждый
  • Размеры и вес (в рабочем состоянии): 485х200x455 мм, 43 кг

RM KL500

Усилитель RM KL500 КВ диапазона (3-30) МГц, входная мощность 1-15 Вт, выходная 300 Вт с технологией электронного переключения и защитой от переполюсовки. Имеет шесть уровней выходной мощности и антенный предусилитель 26 дб.

Частота: КВ

Напряжение: 12-14 Вольт

Потребляемый ток: 10-34 Ампер

Вх. мощность: 1-15 Вт, SSB 2-30 Вт

Вых. мощность: 300 Вт Max (FM) / 600 Вт Max (SSB-CW)

Модуляция: AM-FM-SSB-CW

Шесть уровней мощности

Предохранители: 3×12 A

Размер: 170x295x62 мм

Вес: 1.6 кг Цена (ориентировочно в РФ) = $340

YAESU VL-2000

Большая мощность в сочетании с высокой надёжностью.

8 массивных КМОП полевых транзисторов типа VRF2933, включенных по двухтактной схеме, обеспечивают необходимую выходную мощность в диапазоне от 160 до 6 м. Два больших вентилятора, имеющие систему непрерывного управления скоростью вращения, эффективно охлаждают блок УМ и ФНЧ, и обеспечивая годы надёжной и бесшумной работы.

Два больших стрелочных прибора.

Левый прибор показывает выходную мощность или КСВ. Правый – ток потребления и напряжение питания.

Система мониторинга обеспечивает надёжный и быстрый поиск неисправностей в системе.

В устройствах большой мощности осуществляется мониторинг колебаний сетевого напряжения, нарушения температурного режима, высокого уровня КСВ и превышения уровня РЧ сигнала раскачки по входу.

Встроенный автоматический высокоскоростной антенный тюнер осуществляет согласование вашей антенны по уровню КСВ 1,5 или лучше в течение менее 3 секунд (по паспорту).

Два входных и четыре выходных разъёма позволяют интегрировано выбирать передатчик и необходимую антенну.

Например, два входных разъёма позволяют подключить к первому (INPUT 1) КВ трансивер, а ко второму (INPUT 2) трансивер диапазона 6 м. При этом выходные разъёмы могут быть подключены к различным устройствам коммутации антенн, имеющихся на станции. Автоматический выбор необходимой антенны может быть осуществлён для передатчика, подключенного ко входу 1 (INPUT 1), при этом часто отпадает необходимость в дополнительных антенных переключателях. При включении тумблера “DIRECT”, расположенного на задней панели, усиленный сигнал входа 2 (INPUT 2) подаётся непосредственно на разъём “ANT DIRECT”, минуя систему выходной коммутации. Кроме того, УМ VL-2000 может быть использован в системе SO2R.

Автоматическое переключение диапазонов для осуществления быстрых переходов.

Большинство современных трансиверов Yaesu позволяют осуществлять обмен данными о текущем диапазоне между трансивером и УМ VL-2000, что позволяет автоматически менять диапазон в УМ, при смене последнего в трансивере. Для автоматической смены диапазона при использовании передатчиков других типов в УМ VL-2000 предусмотрена функция автоматического определения диапазона с помощью встроенного частотомера, что обеспечивает немедленную смену диапазона при первой подаче РЧ сигнала на вход УМ.

Технические характеристики

  • Диапазон: 1,8-30; 50-54 МГц
  • Антенный коммутатор: ANT 1-ANT 4, ANT DIRECT
  • Мощность: (1,8-30 МГц) 1,5 KВт, (50-54 МГц) 1,0 KВт
  • Потребление: 63 А
  • Напряжение питания 48 В
  • Виды работ: SSB, CW, AM, FM, RTTY
  • Переключение диапазонов: ручное/автоматическое
  • Выходной транзистор: VRF2933
  • Режим работы выходного каскада: Class-AB, Push-pull, Power Combine
  • Побочные излучения: -60 дБ
  • Входная мощность: от 100 до 200 Вт
  • Температура: -10 +40 С
  • Габариты 482х177х508 мм, Вес: 24,5 кг
  • Блок питания: Выходные напряжения: +48 В, +12 В, -12 В. Выходной ток: +48 В 63 А, +12 В 5,5 А, -12 В 1А,
  • Габариты: 482х177х508 мм. Вес: 19 кг

tagPlaceholder Tags:

(статью дополнено 07.02.2016г.)

UT5UUV Андрей Мошенский.

Усилитель «Джин»

Транзисторный усилитель мощности

с бестрансформаторным питанием

от сети 220 (230)В.

Идея создания мощного, лёгкого и дешёвого усилителя большой мощности актуальна со времён зарождения радиосвязи. Множество прекрасных конструкций на лампах и транзисторах разработано за последний век.

Но до сих пор идут споры, по поводу превосходства твёрдотельной, либо электронно-вакуумной усилительной техники большой мощности…

В эпоху импульсных источников питания вопрос массогабаритных параметров источников вторичного электропитания не столь остр, но, фактически исключив таковой, применив выпрямитель напряжения промышленной сети, всё равно получается выигрыш.

Заманчивой кажется идея использования современных высоковольтных импульсных транзисторов в усилителе мощности радиостанции, применив для питания сотни вольт постоянного тока.

Вашему вниманию предлагается конструкция усилителя мощности на «нижние» КВ диапазоны мощностью не менее 200 Ватт с бестрансформаторным питанием, построенная по двухтактной схеме на высоковольтных полевых транзисторах. Основное преимущество перед аналогами – массогабаритные показатели, низкая стоимость комплектующих, стабильность в работе.

Основная идея – применения активных элементов – транзисторов с граничным напряжением сток-исток 800В (600В) предназначенных для работы в импульсных источниках вторичного электропитания. В качестве усилительных элементов выбраны полевые транзисторы IRFPE30, IRFPE40, IRFPE50 производства компании “International Rectifier”. Цена изделий 2 (два) дол. США. Чуть проигрывают им по граничной частоте, обеспечивая работу лишь в диапазоне 160м, 2SK1692 производства “Toshiba”. Любители усилителей на базе биполярных транзисторов, могут поэкспериментировать с 600-800 вольтовыми BU2508, MJE13009 и иными подобными.

Методика расчёта усилителей мощности и ШПТЛ приведена в справочнике радиолюбителя коротковолновика С.Г. Бунина Л.П. Яйленко. 1984г.

Моточные данные трансформаторов приведены ниже. Входной ШПТЛ TR1 выполнен на кольцевом сердечнике К16-К20 из феррита М1000—2000НМ(НН). Число витков 5 витков в 3 провода. Выходной ШПТЛ TR2 выполнен на кольцевом сердечнике К32-К40 из феррита М1000—2000НМ(НН). Число витков 6 витков в 5 проводов. Провод для намотки рекомендован МГТФ-035.

Возможно изготовить выходной ШПТЛ в виде бинокля, что хорошо скажется на работе в «верхней» части КВ диапазона, правда там приведенные транзисторы не функционируют из-за времени нарастания и спада тока. Такой трансформатор может быть изготовлен из 2 столбцов по 10 (!) колец К16 из материала М1000—2000. Все обмотки по схеме – один виток.

Данные замера параметров трансформаторов приведены в таблицах. Входные ШПТЛ нагружены на входные резисторы (у автора, 5,6 Ома вместо расчётных), включенные параллельно с ёмкостью затвор-исток, плюс ёмкостью за счёт эффекта Миллера. Транзисторы IRFPE50. Выходные ШПТЛ были нагружены со стороны стоков на безындукционный резистор 820 Ом. Векторный анализатор АА-200 производства RigExpert. Завышенный КСВ может быть объяснён недостаточно плотной укладкой витков трансформаторов на магнитопровод, ощутимым несоответствием волнового сопротивления линии из МГТФ-0,35 требуемому в каждом конкретном случае. Тем не менее, на диапазонах 160, 80 и 40 метров проблем не возникает.

Рис 1. Схема электрическая принципиальная усилителя.

Источник питания мостовой выпрямитель 1000В 6А, нагруженный на конденсатор 470,0 на 400В.

Не забывайте о нормах техники безопасности, качестве радиаторов и слюдяных прокладок.

Рис 2. Схема электрическая принципиальная источника постоянного тока.

Рис 3. Фотография усилителя со снятой крышкой.

Таблица 1. Параметры ШПТЛ TR1, выполненного на кольце К16.

Частота кГц R jX SWR
1850 45,5 +4,2 1,15
3750 40,5 +7,2 1,3
7150 40,2 +31,8 2,1

Таблица 2. Параметры ШПТЛ TR2, выполненного на кольце К40.

Частота кГц R jX SWR
1800 48 -0,5 1,04
3750 44 -4,5 1,18
7150 40,3 -5,6 1,28
14150 31,1 4,0 1,5
21200 х х 1,8
28300 х х 2,2

Рис 4. Выходной ШПТЛ на кольце К40.

Таблица 3. Параметры ШПТЛ TR2, конструкции «бинокль».

Частота кГц R jX SWR
1850 27,3 +26 2,5
3750 46 +17 1,47
7150 49 -4,4 1,10
14150 43 -0,9 1,21
21200 х х 1,41
28300 х х 1,7

Рис 5. Выходной ШПТЛ конструкции «бинокль».

При параллельном включении транзисторов и пересчёте ШПТЛ мощность можно значительно повысить. К примеру, на 4 шт. IRFPE50 (2 в плече), выходном ШПТЛ 1:1:1 и питании 310В на стоках, легко получаема выходная мощность 1кВт. При такой конфигурации КПД ШПТЛ особо высок, методика выполнения ШПТЛ неоднократно описана.

Авторский вариант усилителя на двух IRFPE50, приведенный на фотографиях выше по тексту, прекрасно работает на диапазонах 160 и 80 м. Мощность 200 Ватт на нагрузке 50 Ом при входной мощности около 1 Ватта. Цепи коммутации и «обвода» не приведены и зависят от Ваших пожеланий. Прошу обратить внимание на отсутствие в описании выходных фильтров, эксплуатация усилителя без которых недопустима.

Андрей Мошенский

Дополнение (07.02.2016):
Уважаемые читатели! По многочисленным просьбам, с разрешения Автора и редакции, выкладываю Также, привожу фотографию новой конструкции усилителя «Джин».

В реальной конструкции трансивера применен довольно мощный усилитель, пиковая мощность достигает 100Вт. На сегодня, в связи с существующими ценами на мощные ВЧ транзисторы, это довольно дорогой узел. В предоконечном и оконечном каскадах используются отечественные транзисторы, специально разработанные для линейного усиления диапазона 1,5-30МГц при напряжении питания 13,8В.

Пока приведу урезанную версию ШПУ выходной мощностью до 5Вт. Себестоимость его не высока, поэтому будет доступен большинству радиолюбителей. Выходная мощность практически одинакова на всех диапазонах. При желании, можно на высокочастотных участках выходную мощность сделать больше чем на НЧ. Это иногда требуется, когда используется внешний РА с завалом на ВЧ Bands. Первый каскад выполнен на транзисторе КТ610. Лучшая ему замена - это КТ939А, такой транзистор специально разработан для линейного усиления в классе А. Существуют более современные транзисторы с еще лучшими характеристиками, но их очень сложно найти. Например 2Т996Б у которого коэффициент комбинационных составляющих на частоте 60 МГц по второй гармонике (М2) не более - 65Дб, а по третьей гармонике (М3) не более - 95Дб, далеко не каждая лампа может обеспечить такие параметры. Транзистор VT1 используется в классе А при токе покоя 120-150мА. Трансформатор Т1 выполнен на ферритовом кольце диаметром 10 мм, проницаемость 1000. Намотка в два провода без скрутки, провод диаметром 0,24-0,30 мм, восемь витков, соединение начала одной обмотки с концом другой образуют средний вывод. Подъем усиления на ВЧ обеспечивает отрицательная обратная связь в цепи эмиттера, подбирается при помощи С1. Общее усиление и наклон АЧХ можно подбирать изменяя номиналы R5,C2. Усиленный сигнал через разделительный конденсатор С6 поступает на оконечный каскад VT2. Замены этому транзистору, без ухудшения характеристик, не удалось найти. Более-менее здесь еще работают КТ920Б,В; КТ925Б,В. Можно применять КТ921А,КТ922Б,КТ934Б,Г но это транзисторы, предназначение для использования при напряжении питания 24В. Поэтому можно предполагать завал коэффициента усиления и частотных свойств при питании 13,8В. На счет линейности тоже трудно что-то сказать, т.к. из всех перечисленных только КТ921А предназначен для этих целей, остальные предназначены для усиления ЧМ сигнала на частотах выше 50Мгц в классе С. Такие транзисторы можно использовать на КВ диапазонах с приемлемой линейностью только при пониженной мощности (не более 40%). Если читателю захочется более подробно ознакомиться с мнением автора по поводу построения транзисторных ШПУ с питанием 24В на отечественной элементной базе - у него можно заказать книжку-описание сетевого трансивера с синтезатором частоты на Z80 и таким усилителем мощности. При применении КТ965А в этом каскаде и питании 13,8-14В можно получить не менее пяти линейных Ватт мощности. При сравнении анализатором спектра СК4-59 5Вт полученных в TRX RA3AO и такой же мощности при применении КТ965А, сразу появилось желание выкинуть узел А21 в “дроздивере”. Двухтактный усилитель на КТ913 (А21) обеспечивает наличие “палок” на экране анализатора до предельной частоты прибора (110МГц), а может и выше, т.к. просто не позволяют разрешающие частотные свойства СК4-59. Транзистор КТ965 не предназначен для работы выше 30МГц, поэтому он просто не “тянет” на таких частотах и следы “палок” можно увидеть только на частотах до 50МГц, гармоники подавлены в худшем случае не менее 25Дб. Таким сигналом можно работать в эфире и возбуждать любой усилитель мощности без всяких фильтров. На рис.6 показан двухзвенный фильтр низкой частоты установленный на выходе усилителя, который обрезает те остатки “палок”, которые еще можно разглядеть на экране анализатора, выше 32МГц (L6,L7,C20,C21, C22). В случае “урезанного” ШПУ этот ФНЧ можно не устанавливать. Ток базы VT2 стабилизируется цепочкой VD1,VD2,VT3. Элементы C4,R8 определяют амплитудно-частотную характеристику каскада. Резисторы отрицательной обратной связи R10,R11 улучшают линейность. Резистор R7 служит для предотвращения пробоя эмиттерного перехода при обратной полуволне управляющего напряжения и рассчитывается по формуле R=S/2пFгр.Cэ. Ток покоя в пределах 300-350мА, выставляется резистором R9. Трансформатор Т2 можно выполнить на ферритовом кольце диаметром 16-20 мм проницаемостью 300-600 или применить “бинокль” из колец К10 проницаемостью 600-1000, достаточно по 4 кольца в столбике. Если предполагаемая нагрузка 50-75Ом, трансформировать сопротивление нужно 1:4, для этих целей подойдет трансформатор на кольце намотанный бифилярно проводом 0,6-0,8 мм, достаточно 7-9 витков. Средний вывод, образованный соединением начала одной обмотки с концом другой, подсоединяется к коллектору VT2. С одного свободного вывода через разделительный конденсатор емкостью 47-68Н, реактивной мощностью не менее 10 Вт, снимаем полезный сигнал, а на другой конец обмотки подается питающее напряжение. В случае если сопротивление нагрузки может быть более 100Ом или оно неизвестно, лучше применить трансформатор типа “бинокль”, т.к. с таким трансформатором легче менять соотношение трансформируемых сопротивлений. Выполняется он таким образом - нужно склеить из колец два столбика, затем столбики склеить между собой наподобие “бинокля”. Обмотка I может составлять 1-2 витка провода сечением не менее 0,6 мм. При неизвестном сопротивлении нагрузки обмотку II вначале наматывают с заведомо большим количеством витков, например 5, провод можно использовать монтажный многожильный. Затем, руководствуясь показаниями потребляемого тока каскадом на VT2, показаниями лампового вольтметра, включенного параллельно нагрузке, находим оптимальное соотношение витков трансформатора. Нужно проверять значение выходной мощности на самой высокой частоте - 29Мгц, в середине диапазонов - 14Мгц и на 1,8Мгц. Цепочка из резисторов R12,R13 в мощной версии ШПУ именуется “защитой от дурака”. Здесь служит как делитель при измерении выходной мощности. Элементы R14,C15 компенсируют неравномерность измерителя мощности во всем частотном интервале от 1,5 до 30МГц. Резистор R15 служит для градуировки показаний миллиамперметра. Для того, чтобы делитель не отбирал на себя часть полезной мощности, можно пропорционально увеличить сопротивление R12,R13, но тогда функции “защиты” выполняться не будут. Реле Р1 типа РЭС10 или его герметизированный аналог - РЭС34, паспорт 0301, сопротивление обмотки около 600Ом, предварительно проверить на надежность срабатывания от 11-12В. Можно применять 12-ти вольтовые паспорта с сопротивлением обмотки 100-120Ом, но тогда VT4 нужно заменить на более мощный транзистор (КТ815). Дроссели Др1 и Др3 должны выдерживать рабочий ток - Др1 до 150мА, Др3 до 1А.

Усилитель мощности 50-100Вт.

Схемотехника транзисторных широкополосных усилителей мощности отработана и если просмотреть схемы импортных трансиверов, как дешевых так и самых дорогих моделей, то различие в построении этих узлов минимальны, отличия только в наименовании транзисторов, номиналах деталей и незначительно в схеме. Если читатель знаком с предыдущей книжкой - описанием сетевого TRX, в котором применен ШПУ на КТ956А, то он может отметить минимальную разницу в построении таких каскадов. Так как трансивер предназначен для работы от источника питания напряжением 13,8В, то поиски были направлены на то, чтобы обеспечить требуемую мощность с минимальным завалом амплитудно-частотной характеристики в высокочастотной области и сохранением линейности при понижении напряжения питания до 11В. Выбор транзисторов отечественного производства для решения этой задачи очень мал. Если еще учесть, что стоимость их как правило выше, чем транзисторов предназначенных для работы от 24-28В и на радиорынках они довольно редко встречаются, то прежде чем браться за изготовление такого усилителя следует задуматься - а нужно ли прилагать героические усилия, чтобы зацикливаться на этих пресловутых, принятых во всем мире 13,8В? Может слепить ШПУ из того “радиобарахла”, что есть в наличии? Есть же КТ960,КТ958,КТ920,КТ925, которые довольно часто применяют радиолюбители.

    • Низкочастотные (граничная частота до 3МГц)
    • Высокочастотные (граничная частота до 300МГц)
    • Сверхвысокочастотные (граничная частота выше 300МГц).

Нас интересует вторая группа, внутри нее транзисторы разделяются на:

    • А) предназначенные для линейного усиления ВЧ сигнала
    • Б) для широкополосного усиления сигнала в классе С на частотах 50-400МГц.

Более подробно о том, как проектируются и изготавливаются те или иные транзисторы лучше прочесть в профессиональной литературе. Здесь же отметим лишь основные отличия подгруппы “А” и “Б”. Группа А, транзисторы предназначенные для связной аппаратуры - это в основном линейные широкополосные усилители, работающие в режиме одной боковой полосы, к транзисторам предъявляются дополнительные требования как по конструктивному исполнению (уменьшение емкости коллектора и индуктивности эмиттерного вывода) так и по линейности. В мощных ВЧ транзисторах для связной аппаратуры амплитуда комбинационных составляющих третьего и пятого порядков в 25-30 раз меньше чем амплитуда основных сигналов (ослабление не менее 27-33Дб). При изготовлении транзисторов этой группы производители основное внимание уделяют параметрам линейности и запасу прочности в предельных режимах эксплуатации. В подгруппе Б больше внимания уделяют частотным свойствам и повышению коэффициента усиления по мощности. Например, два транзистора, рассчитанные на получения одинаковой мощности 20Вт - КТ965А (подгруппа А) и КТ920В (подгруппа Б) отличаются предельными эксплуатационными параметрами. КТ965А - ток коллектора 4А, рассеиваемая мощность 32Вт при питании 13В; КТ920В - соответственно 3А, 25Вт при 12,6В. Так как граничная частота транзисторов, предназначенных для работы ниже 30 МГц, довольно невысокая (до 100МГц), то изготовителю легче произвести прибор с большей перегрузочной способностью. Например, минимальные размеры элементов транзистора на частоты 200-500МГц составляет 1мкм и менее, тогда как для частот 50-100МГц они могут иметь размер 3-4 мкм . В том, что перегрузочная способность транзисторов разработанных для линейного усиления КВ диапазона выше, чем у приборов более высокочастотных, но используемых радиолюбителями на частотах до 30МГц, пришлось убедиться на практике. Например, ШПУ с выходной мощностью 70Вт на КТ956А выдерживает КСВ до 10 в длительном режиме и обладает достаточно хорошей линейностью, чего нельзя сказать о точно таком же усилителе на КТ930Б. RU6MS использует ШПУ на КТ956А с выходной мощностью 100-130Вт в виде приставки к “Катрану” уже несколько лет, нагружая усилитель непосредственно на антенну без всякого согласования. Помеха телевидению, даже при использовании “польских” активных антенн, полностью отсутствует. Перед этим он пытался эксплуатировать усилитель, опубликованный Скрыпником в журнале "Радио" и кроме нервных стрессов после очередной замены КТ930Б, отсутствия возможности работать в эфире когда любимая жена смотрит очередной сериал по телевизору, насколько мне известно, другого опыта получено не было. RK6LB применяет промышленный блок на двенадцати КТ956А (мощность до 500Вт) и спокойно работает в эфире при расстоянии 4 метра между усилителем и головной, формирующей сигналы шести телевизионных каналов, станцией кабельного телевидения. Аналогичные параметры линейности и надежности можно получить, применяя транзисторы предназначенные для питания напряжением 13,8В. К сожалению перечень таких изделий выпускавшихся отечественной промышленностью очень мал - это КТ965А,КТ966А,КТ967А. Более современные типы транзисторов на радиорынках попадаются очень редко. Максимальные значения выходной мощности могут быть получены при применении КТ966А и КТ967А, но рассматривать эти версии ШПУ здесь не будем из-за дефицитности транзисторов. Достаточно линейных 50-60Вт выходной мощности можно получить с более доступными КТ965А. Если предполагается частая работа от аккумулятора, то на этом можно остановиться.

Следует учесть, что основная масса радиолюбителей до сих пор используют в трансивере выходной каскад на ГУ19 с такими же энергетическими параметрами и они не могут оценить великолепную чистоту эфира в моменты отключения электроэнергии. А если ещё происходят ежедневные "плановые" отключения, то пользователям ламповой техники остаётся только посочувствовать. Они теряют не только время, но и громадное удовольствие от прослушивания диапазонов во время отсутствия помех, когда отключается электроэнергия в достаточно большом районе. В том случае, когда нужна мощность не менее 100Вт при 12В аккумуляторе, потребуются КТ966,967 или импортные аналоги таких транзисторов, но тогда резко повышается стоимость трансивера и логичнее приобрести что-то готовое фирменное, нежели “изобретать велосипед”. Можно попытаться применить при низковольтном питании транзисторы, разработанные для 27В - это КТ956А, КТ957А, КТ944А, КТ955А, КТ951Б, КТ950Б но, как показал опыт, придется смириться с ухудшением энергетических характеристик и линейности. Одна из версий трансивера, использованного UA3RQ, была такова - задействованы КТ956А при напряжении питания около 20В, в моменты отключения сети подключаются три последовательно включенных щелочных аккумулятора напряжением 19В. Два типа доступных мощных ВЧ транзисторов - КТ958А и КТ960А предполагают их применение в таком трансивере, т.к. разработаны они под питающее напряжение 12,6В но для класса С. По техническим условиям в случае применения этих приборов в режимах классов А,АВ,В рабочая точка должна находиться в области максимальных режимов, т.е. более предпочтительна работа телеграфом и ограниченным SSB сигналом. Для обеспечения достаточной надежности, выходная мощность не более 40Вт. Желательна работа на согласованную антенную нагрузку, в противном случае линейка ШПУ на таких транзисторах склонна к подвозбуду.

Усилитель выполнен на печатной плате привинченной к задней стенке-радиатору корпуса. Распайка деталей с одной стороны платы на вытравленных площадках. Такой способ монтажа позволяет легко закрепить плату на радиаторе и обеспечивает доступ к замене элементов без переворачивания платы, тем самым упрощается процесс настройки ШПУ. Напряжение питания платы 13,8В, если используется отдельный стабилизированный мощный источник питания для трансивера, то напряжение для этого узла можно поднять до 14,5В, а для остальных каскадов TRX ввести дополнительный стабилизатор на 12-13В. Такая мера позволяет увеличить общий коэффициент усиления и соответственно облегчит задачу получения равномерной АЧХ. Ту же мощность при повышенном напряжении можно будет получить при меньшем токе и за счет этого уменьшить просадку питающего напряжения на подводящих проводах. Не нужно забывать, что при низковольтном питании трансивера и довольно большой выходной мощности, потребляемый ток может достигать значительных значений. При выходной мощности 50-60Вт потребляемый ток превышает 7А. Отрицательно сказываются на стабильности питающего напряжения длинные подводящие провода между блоком питания и трансивером. Например на сетевом “шнурке” длиной 1м от сгоревшего 100Вт паяльника, используемом для подачи питающего напряжения от блока питания к трансиверу, просадка напряжения при токе до 10А может достигать 0,3-0,5В, приплюсуйте сюда просадку на проводах внутри трансивера от разъема до выключателя и обратно к плате ШПУ, в итоге на коллекторах выходных транзисторов при максимальной мощности вместо 13,8В, на которые настроен блок питания, имеем 13-13,3В. Это не улучшает ни линейность усилителя, ни его энергетические показатели.

ШПУ трехкаскадный, первый каскад работает в режиме класса А, второй - класс АВ и оконечный в классе В. Схемотехника подобна применяемой в импортных трансиверах и отечественной связной аппаратуре, т.к. такие узлы хорошо отработаны и нет смысла “удивлять мир” радиолюбительскими конструкциями. Основные задачи при построении транзисторных ШПУ - обеспечение максимально линейной АЧХ, надежности и устойчивой работы на нагрузку, отличающуюся от номинальной. Равномерная отдача мощности во всем рабочем диапазоне частот решается при помощи выбора типов транзисторов, дополнительными частотозависимыми цепочками отрицательной обратной связи, подбора соответствующих широкополосных трансформаторов и конструктивным выполнением. Надежная и устойчивая работа обеспечивается всевозможными защитами по перегрузкам, выбором типов радиоэлементов и конструктивным исполнением.

Первый каскад усилителя выполнен на транзисторе VT1 в качестве которого можно применить КТ610, КТ939 или более современный 2Т996Б. Из доступных транзисторов лучший - это КТ939А, т.к. он специально разработан для работы усилителя в классе А с повышенными требованиями к линейности. Транзистор 2Т996Б по данным завода изготовителя обеспечивает такие цифры линейности в которые трудно поверить - коэффициент комбинационных составляющих на частоте 60МГц по второй гармонике (М2) не более - 65Дб, а по третьей гармонике (М3) не более - 95Дб, далеко не каждая лампа может обеспечить такие параметры. Ток покоя зависит от типа применяемого транзистора и составляет не менее 100-160мА. Первый каскад должен работать в жестком режиме класса А с минимумом “мусора” в выходном сигнале, т.к. от этого будет зависеть не только то, что получим на выходе линейки ШПУ, но и общий коэффициент усиления полезного сигнала. Последующие каскады так же широкополосные и они будут одинаково усиливать все сигналы поступающие на их вход. При большом количестве гармоник во входном сигнале часть мощности будет бесполезно расходоваться на их усиление, за счет комбинационных взаимодействий между ними это еще ухудшит и общую линейность. Если посмотреть анализатором спектра такую ситуацию, то обнаружим на выходе каскада еще больший частокол “палок” гармоник, чем видно во входном сигнале. Ток покоя первого каскада регулируется резистором R2. Максимальную отдачу на частоте 29 МГц регулируют конденсатором С1. Цепочка R5,C1 определяет как общий коэффициент усиления, так и наклон АЧХ. Трансформатор Т1 выполнен на ферритовом кольце К7-10 проницаемостью 1000, намотка бифилярная без скрутки двумя проводами диаметром 0,15-0,18 мм равномерно по всему кольцу, достаточно 7-9 витков. Начало одной обмотки соединено с концом второй и образует средний вывод. Дроссель Др1 должен выдерживать потребляемый транзистором ток. При настройке первого каскада основное внимание нужно уделить линейности работы каскада и максимальной отдаче на 29МГц. Не следует увлекаться повышением коэффициента усиления каскада, уменьшая R3,R4 и увеличивая R5 - это приведет к ухудшению линейности и устойчивости работы всего ШПУ. В зависимости от того, какую мощность хотим получить, ВЧ напряжение на коллекторе VT1 нагруженного на VT2, составляет 2-4В. Далее усиленный сигнал через С6 поступает на второй каскад, который работает с током покоя до 350-400мА. Конденсатор С6 определяет АЧХ и в случае завала на 160 м, его номинал можно увеличить до 22-33Н. Здесь применен транзистор КТ965А. Это на первый взгляд не совсем логичное решение, т.к. транзистор “очень мощный” для такого каскада и используется здесь на 15-20% от того, что в нем “заложено”. Попытки применить более “слабый” транзистор в этом каскаде не дали желаемых результатов. Высокочастотные транзисторы 12В серии из доступных - КТ920, КТ925 с различными буквами если и обеспечивали энергетические параметры, то не давали малого количества “палок” в выходном сигнале на экране анализатора спектра. Транзистор КТ921А при хорошей линейности не обеспечивает требуемую АЧХ при питании напряжением 13,8В и не раскачивает выходной каскад до требуемой мощности на ВЧ диапазонах. Только при применении КТ965А удалось получить до 5Вт линейного сигнала с этого каскада. Кстати, если нет требования получения большой мощности от такого трансивера, то на этом каскаде можно завершить построение ШПУ. Трансформатор Т2 следует включить наоборот, т.е. обмоткой II в цепь коллектора, а обмоткой I в нагрузку. Нужно будет подобрать соотношение витков обмоток для оптимальной согласовки с нагрузкой. Но даже при переключенном Т2 без подбора соотношения витков в обмотках, на нагрузке 50 Ом линейка из транзисторов 2Т355А (плата ДПФов), 2Т939А и 2Т965А обеспечивает 13-16В эффективного напряжения. Потребляемый ток достигает 1,3-1,5А, КПД получается невысокий, но это плата за высокую линейность сигнала. Если не удается найти КТ965А, тогда целесообразно этот каскад выполнить двухтактным на транзисторах КТ921А, рис.8. Придётся смириться с некоторым завалом на частотах выше 21 МГц, выходная мощность с таким каскадом достигает 10Вт. Можно получить спектрально очень чистый сигнал с линейной АЧХ мощностью до 5Вт, увеличивая отрицательные обратные связи элементами R5-R8,R10,C9,R11,C10. На схеме показаны раздельные цепи смещения отдельно для каждого транзистора - это версия для самого "бедного радиолюбителя", у которого нет возможности подобрать пару VT2,VT3 с идентичными характеристиками.

Если предполагается подбор транзисторов, тогда цепи питания баз можно объединить. Предварительно резисторами R14,R15 в цепочках стабилизаторов токов баз нужно выставить ток покоя в пределах 150-200 мА на каждый транзистор, а затем более точно подрегулировать по подавлению ближайшей четной гармоники, которую можно прослушать на дополнительный приемник. Пределы регулировки тока покоя зависят от крутизны применяемых транзисторов и количества последовательно включенных диодов VD1,VD2 и VD3,VD4. Попадаются транзисторы у которых для получения тока покоя до 200мА достаточно одного включенного диода. Цепочки С7,R1 и С8,R2 обеспечивают подъем амплитудно-частотной характеристики на высокочастотных диапазонах. Дроссель Др3 должен обеспечивать требуемый каскаду ток (до 2А) без просадки на нем напряжения. Его можно намотать на небольшом ферритовом кольце проницаемостью 600 и более, проводом диаметром не менее 0,6-0,7 мм, достаточно 10-20 витков.

Трансформатор Т1 выполнен в виде “бинокля” из ферритовых колец диаметром 7 мм, проницаемостью 1000-2000. Столбики “бинокля” склеены из 3-4 колец в зависимости от их толщины, высота столбика 9-11 мм. Первичная обмотка 2-3 витка монтажного провода во фторопластовой изоляции, вторичная 1 виток провода ПЭЛ 0,7-0,8 мм.

Трансформатор Т2 выполнен тоже в виде “бинокля”. Два столбика склеены из ферритовых колец проницаемостью 1000, диаметром 10 мм, столбики высотой 13-16 мм. Также можно использовать кольца проницаемостью 1000-2000 диаметром 7 мм, высота столбиков 10-11 мм. Первичная обмотка - 1 виток из оплетки от тонкого коаксиального кабеля с отводом от середины или один виток из сложенных двух монтажных проводов во фторопластовой изоляции, начало одного соединено с концом второго и образует средний вывод. Виток считается, когда провод входит в один “глазок бинокля” и возвращается из второго. Вторичная обмотка, в случае применения оплетки от коаксиального кабеля для I обмотки, проходит внутри этой оплетки, если же применен монтажный провод для “первички”, то обмотка II пропускается через отверстия столбиков аналогично I обмотке, только выводами в противоположную сторону. Количество витков обмотки II может колебаться от 2 до 5 в зависимости от исполнения обмотки I и их придется подобрать экспериментально по лучшему КПД и оптимальной АЧХ выходного каскада на требуемом сопротивлении нагрузки.

“Бинокли” нельзя приклеивать без изоляции на печатную плату, т.к. некоторые марки ферритов пропускают постоянный ток. Следует отметить, что ФНЧ на элементах С34,L1,C35,L2,C36 рассчитан на сопротивление 50 Ом. Если нагрузка значительно отличается от этого значения, фильтр нужно пересчитать или исключить, т.к. он в этом случае будет вносить неравномерность в АЧХ усилителя. Вернемся к схеме на рис. 9. Резистор R7 служит для предотвращения пробоя эмиттерного перехода при обратной полуволне управляющего напряжения и рассчитывается по формуле R=S/2пFгрСэ. Ток базы VT2 стабилизируется цепочкой VD1,VD2,VT3,R9,C9. Резистором R9 выставляется ток покоя. При помощи элементов отрицательной обратной связи R8,C4,R10,R11 можно выставить требуемую АЧХ и коэффициент усиления каскада. Устанавливать VT3 на теплоотвод не требуется. Дроссель Др3 должен выдерживать ток до 1,5А.

Настройка каскада заключается в подборе тока покоя резистором R9, коррекции амплитудно-частотной характеристики и коэффициента усиления резистором R8 и в меньшей степени конденсатором С4. Предварительно обмотку I трансформатора Т2 следует намотать 3 витка. Окончательный подбор будет осуществляться при настройке всего ШПУ.

Противофазные сигналы с трансформатора Т2 через цепочки C16,R15,C17,R16 формирующие требуемую АЧХ, поступают на выходные транзисторы VT6,VT5. Резисторы R8,R17 служат для той же цели, что и R7. При помощи С15 обмотка 2 трансформатора Т2 настраивается в резонанс на самой высокой рабочей частоте (29,7Мгц).

По выходным транзисторам VT6,VT5 информация следующая. Тип применяемых транзисторов зависит от предполагаемой выходной мощности. Самые мощные и соответственно дорогие - это КТ967А. С них можно получать выходную мощность более 100Вт с очень высокой надежностью. Возможно применение КТ956А, но при напряжении питания 13,8В у этих транзисторов резко падает усиление на высокочастотных диапазонах и линейность. Выход только один - повышать напряжение питания хотя бы до 18-20В. С транзисторами КТ965А в выходном каскаде возможно получение 50-60Вт с приемлемой надёжностью. Хотя в справочниках указывается выходная мощность 20Вт на один транзистор, но это как раз тот редкий случай, когда указана "штатная" мощность при применении в промышленной и военной технике с большим запасом надёжности. В качестве эксперимента с пары 2Т965А на 50Ом эквиваленте удавалось получить 90Вт на низкочастотных диапазонах. При выходной мощности 40-45Вт усилитель выдерживает практически любой КСВ в длительном режиме, оптимальной такую работу назвать, конечно же, нельзя. Т.к. при длительной работе с высокими значениями КСВ, например, несколько пользователей этой техники упрямо используют одну "проволоку" на все диапазоны (называя это антенной), обычно один-два раза в год они меняют первый транзистор линейки ШПУ - КТ355А. "Отражёнка" блудит по трансиверу и самое слабое место оказалось в первом каскаде. С транзисторами КТ966А можно получать не менее 80Вт выходной мощности, но у них больше завал на ВЧ диапазонах. Как показал опыт длительного применения этих транзисторов при КСВ до 1,5-2 они выдерживают двукратную перегрузку по мощности. Более распространенные и дешёвые транзисторы такие параметры, увы, не обеспечивают. Например, при применении КТ920В,925В можно с натяжкой получить линейных 40Вт, при превышении этой цифры резко падает надёжность и растёт уровень внеполосных излучений.

Дополнительно усиление и АЧХ можно корректировать цепочками R19,C30 и R20,C27. Стабилизатор базового смещения выполнен на элементах VD4,VD5,VT4. Транзистор VT4 через слюдяную прокладку прикручен к радиатору. Дроссель Др4 намотан на ферритовом стерженьке от самых больших и длинных дросселей (ДМ3) или на ферритовом кольце проницаемостью 600-1000, диаметром 14-16мм для удобства намотки, провод диаметром не менее 0,8мм на стерженьке до заполнения, на кольце достаточно 7-10 витков. Дроссели Др5,Др6 можно применить типов ДПМ-0,6 или намотать их на ферритовых колечках диаметром 7мм, проницаемостью 600-1000, достаточно 5 витков провода ПЭЛ 0,35-0,47мм.

Трансформатор Т3 - "бинокль" из колец диаметром 10-12мм, проницаемость 600-1000, длина столбиков 28-24мм. Обмотка 1 - один виток оплётки от коаксиального кабеля, обмотка 2 - два-три витка монтажного провода во фторопластовой изоляции, проложенного внутри первичной обмотки. Точное количество витков вторичной обмотки подбирается при настройке на требуемое сопротивление нагрузки и номинальной выходной мощности по равномерной АЧХ и наилучшему КПД каскада.

Ток покоя по 200-250мА на транзистор, подбирается резистором R24. Более точно ток покоя можно выставить по наибольшему подавлению чётных гармоник, которые можно проконтролировать анализатором спектра или дополнительным приёмником. Выходные транзисторы требуют обязательного подбора пары. Подбор на малом токе не оптимален - нужно проверить характеристики при токах коллектора 50мА, 300мА, 1А. Более того, транзисторы с близкими характеристиками на постоянном токе следует подобрать в пары ещё и на ВЧ по одинаковой отдаваемой мощности. Т.к. например, самые "крутые" на постоянном токе транзисторы очень часто уступают по отдаче на ВЧ транзисторам с параметрами "ниже средних". Задача успешного выбора пары выходных транзисторов достаточно просто решается - если есть в наличии хотя бы десяток транзисторов. Надежды на то, что раздельное питание баз может компенсировать разброс - увы, - "имеет место быть" только при небольшом разбросе. Наша промышленность так безобразно выдавала "на гора" эту продукцию, что разбросы таковы - на постоянном токе при одном и том же базовом смещении ток коллектора может колебаться от 20 до 300мА, а амплитуда ВЧ напряжения на нагрузке при одинаковой "раскачке" может быть и 20, и 30В. Сложно предположить, что будет выдавать ШПУ если в выходном каскаде применить два транзистора с крайними значениями разбросов. Понятно, что удовлетворения от работы такого "чуда" не получит ни сам пользователь, ни слушатели.

В реальной конструкции ШПУ различия параметров выходных транзисторов отражаются снижением выходной мощности, неравномерным нагревом транзисторов (более "крутой" греется сильнее), из-за перекоса плеч повышенное содержание гармоник в выходном сигнале (вплоть до появления TVI), низким КПД. К сожалению, одним тестером подобрать качественно пару транзисторов для выходного каскада не удаётся, поэтому если есть очень большое желание изготовить такой усилитель, но не удаётся приобрести достаточного количества, чтобы подобрать пару, в крайнем случае, можно за помощью обратиться к автору этих строк, не забывайте только, что возможности мои не безграничны.

К выходной обмотке трансформатора Т3 подпаяна "защита от дурака", состоящая из резисторов R21,R22. В случае, если у линейки ШПУ исчезнет нагрузка или будет подключено вместо антенны неизвестное сооружение, то вся мощность будет рассеиваться на этих резисторах. Рано или поздно от этих резисторов пойдёт дух горелой краски - сигнал нерадивому "эксплуататору" - смотри "чего-то не так, горим". Эта простейшая, но действенная защита позволяет, в случае надобности, без особенных опасений включать трансивер на передачу на неизвестную нагрузку. Чем сопротивление нагрузки выше 50ти Ом, тем большая мощность рассеивается на этих резисторах. Ситуации, когда сопротивление нагрузки ниже чем 50Ом возникают намного реже, и как показывает опыт, усилитель легче выдерживает КЗ нагрузки, нежели её отсутствие. Какая низкоомная нагрузка ни была бы, всегда есть реактивное сопротивление коаксиального кабеля, которым она подключена и реактивность ФНЧ, поэтому абсолютное КЗ на выходе УМа получить достаточно сложно, конечно, если специально не имитировать такую ситуацию. Как гласит один из законов Мерфи: "Защита от дурака срабатывает до того момента, пока не появится изобретательный дурак".

Цепочка R24,C37,VD6,C38,R23 служит для измерения выходной мощности. Элементы R24,C37 подобраны таким образом, чтобы компенсировать неравномерность измерения мощности от частоты. Резистором R23 регулируют чувствительность измерителя.

Фильтр нижних частот с частотой среза 32Мгц состоит из C34,L1,C35,L2,C36. Он рассчитан под 50Ом нагрузку. ФНЧ следует дополнительно настроить по наивысшей отдаче на 28Мгц, сдвигая-раздвигая витки катушек L1,L2. В случае применения дополнительного согласующего устройства между трансивером и антенной или при работе с внешним усилителем мощности его достаточно для подавления внеполосных излучений. В правильно изготовленном и настроенном усилителе уровень второй гармоники не более -30Дб, третьей не более -18Дб, комбинационных колебаний третьего порядка в пике огибающей двух тонового сигнала не более -32Дб.

Контакты К1 реле Р1 подключают антенное гнездо к ШПУ в режиме передачи. Реле Р1 управляется через транзисторный ключ VT4 напряжением ТХ. Диод VD3 служит для защиты транзистора VT4 от бросков обратного тока при переключении реле. Р1 типов РЭС10, РЭС34 с сопротивлением обмотки до 400Ом, его предварительно нужно проверить на надёжность срабатывания от 12-13В. Некоторые реле, например РЭС10 паспортов 031- 03 02, 031-03 01 при напряжении питания 13,8В надёжно отрабатывают в течении первых двух-трёх недель, а затем при нагреве отсека УМа, где и расположены эти реле, начинают отказывать - недотягивают контакты и не подключают выход ШПУ к антенне. Возможно - это было связано с низким качеством реле, хотя десяток реле из той же коробки работают безотказно уже несколько лет. Также можно применить РЭС10 с сопротивлением обмотки 120Ом, паспорт 031-04 01, но нужно учесть, что потребляет оно около 110мА, при 13,8В питании TRX греется, что не улучшает общий температурный режим отсека ШПУ, соответственно максимальный коллекторный ток транзистора VT4 должен быть не менее этого значения. При применении РЭС10 выше описанных паспортов, в качестве VT4 можно применять КТ315.

Замечена интересная особенность отечественной элементной базы - она требует предварительного "теста", прогона в течении не меньше одной-двух недель и желательно в различном температурном режиме, т.е. трансивер следует включать-выключать, чтобы он во время работы нагревался и при отключении остывал. Тогда те детали, которые "должны вылететь" из-за их низкого качества "улетят" быстрее и не приведут к "нервному стрессу" в самый неподходящий момент, как это чаще всего бывает. После такого тестирования трансивер при грамотной и аккуратной эксплуатации, как правило, безотказно работает годами.

Усилители мощности ВЧ

КВ ЛИНЕЙНЫЙ ЛАМПОВЫЙ УСИЛИТЕЛЬ МОЩНОСТИ СЕГОДНЯ

Часть первая

Очень многие коротковолновики убеждены - о ламповых усилителях известно все. И даже больше... Может быть. Вот только число некачественных сигналов в эфире не уменьшается. Скорее наоборот. И что самое печальное, все это происходит на фоне роста количества используемых промышленных импортных трансиверов, параметры передатчиков которых достаточно высоки и удовлетворяют требованиям FCC (американской Федеральной комиссии связи). Однако иных моих коллег по эфиру, смирившихся с тем, что FT 1000 "на коленке" не сделаешь и использующих РА, сконструированные по канонам тридцатилетней давности (ГУ29 + три ГУ50) и т.д., не покидает уверенность, что по РА "мы впереди планеты всей". Замечу, "они там, за рубежом", не только покупают, но и конструируют РА, достойные внимания и повторения.

Как известно, на KB в усилителях мощности применяются схемы с общей сеткой (ОС) и с общим катодом (ОК). Выходной каскад с ОС - почти стандарт для радиолюбителей СНГ. Здесь используются любые лампы - и специально предназначенные для работы по схеме с ОС, и лампы для линейного усиления в схемах с ОК. По-видимому, объяснить это можно следующими причинами:
- схема с ОС теоретически не склонна к самовозбуждению, т.к. сетка заземлена либо по ВЧ, либо гальванически;
- в схеме с ОС линейность на 6 дБ выше за счет отрицательной обратной связи по току;
- РА с ОС обеспечивают более высокие энергетические показатели, чем РА с ОК.

К сожалению, что хорошо в теории, на практике хорошо не всегда. При использовании тетродов и пентодов с высокой крутизной вольтамперной характеристики, третья сетка или лучеобразующие пластины которых не соединены с катодом, РА с ОС могут самовозбуждаться. При неудачном монтаже, некачественных комплектующих (особенно конденсаторах) и плохом согласовании с трансивером легко создаются условия баланса фаз и амплитуд для получения классического автогенератора на KB или УКВ по схеме с ОС. Вообще, согласовать трансивер с РА по схеме ОС не так просто, как об этом иногда пишут. Часто приводимые цифры, например 75 Ом для четырех Г811, верны только теоретически. Входное сопротивление РА с ОС зависит от мощности возбуждения, анодного тока, настройки П-контура и т.д. Изменение любого из этих параметров, например повышение КСВ антенны на краю диапазона, вызывает рассогласование на входе каскада. Но и это еще не все. Если на входе РА с ОС не применяется настроенный контур (а это обычное явление в самодельных усилителях), то напряжение возбуждения становится несимметричным, т.к. ток от возбудителя протекает только на отрицательных полупериодах входного напряжения, и это увеличивает уровень искажений. Таким образом, возможна ситуация, когда вышеприведенные факторы сведут на нет преимущества схемы с ОС. Но, тем не менее, РА с ОС популярны. Почему?

На мой взгляд, вследствие отличных энергетических показателей: когда необходимо "качнуть мощу", схеме с ОС цены нет. О линейности усилителя при этом думают в последнюю очередь, ссылаясь на крепко усвоенное из - "вносимые каскадом искажения мало зависят от выбора рабочей точки на характеристике". Например разработанная для линейного усиления однополосных сигналов лампа ГУ74Б в типовом включении в схеме с ОК должна иметь ток покоя около 200 мА, и вряд ли удастся при этом получить выходную мощность более 750 Вт (при Ua=2500 В) без риска для долголетия лампы, т.к. мощность рассеяния на аноде будет предельной. Другое дело, если ГУ74Б включить с ОС - ток покоя можно установить менее 50 мА, а получить выходную мощность 1 кВт . Сведений об измерении линейности подобных РА разыскать не удалось, а аргументы типа "на данном усилителе проведено множество QSO, и корреспонденты неизменно отмечали высокое качество сигнала" - субъективны, следовательно, неубедительны. Мощность более 1 кВт в приведенном выше примере обеспечивает популярный промышленный ALPHA/POWER ETO 91В, использующий пару ламп ГУ74Б с ОК в рекомендованном производителем режиме работы с известными интермодуляционными характеристиками. По-видимому, разработчики данного усилителя были озабочены не только экономическими соображениями (еще одна лампа удорожает и усложняет конструкцию), но и соответствием параметров РА нормам и требованиям FCC.

Достоинством РА с ОС считается отсутствие необходимости стабилизации напряжений экранной и управляющей сеток. Верно это лишь для схемы, в которой указанные сетки непосредственно соединены с общим проводом . Подобное включение современных тетродов вряд ли можно считать корректным - не только отсутствуют данные о линейности каскада в таком режиме, но и мощность рассеяния на сетках, как правило, превышает допустимую. Мощность возбуждения для такой схемы - около 100 Вт, а это вызывает повышенный разогрев трансивера, например при интенсивной работе на общий вызов. Кроме того, при длинном соединительном кабеле требуется применение на входе усилителя коммутируемого П-контура, чтобы избежать высоких значений КСВ и связанных с этим проблем.

К недостаткам схем с ОК причисляют необходимость стабилизации напряжений экранной и управляю щей сеток; однако у современных тетродов в режиме АВ1 мощность, потребляемая указанными цепями, невелика (20...40 Вт), а стабилизаторы напряжения на доступных в настоящее время высоковольтных транзисторах достаточно просты. Если на силовом трансформаторе отсутствуют необходимые напряжения, можно применить подходящие маломощные трансформаторы, подключив их наоборот - вторичной обмоткой к напряжению накала 6,3 или 12,6 В. Другой недостаток схемы с ОК - большая мощность рассеяния на аноде в паузах передачи. Один из возможных путей ее снижения приведен на рис.1 (упрощенная схема из ).

Напряжение возбуждения через емкостный делитель подается на двухполупериодный выпрямитель VD1, VD2 и далее - на компаратор DA1. Срабатывание компаратора переводит лампу из закрытого состояния в рабочий режим. В паузах передачи напряжение возбуждения отсутствует, лампа заперта, и мощность рассеяния на аноде незначительна.

На мой взгляд, РА с ОС может применяться на KB с устаревшими лампами - для удешевления конструкции, или с лампами, специально предназначенными для работы в таком включении. Применение на входе настроенного LC-контура невысокой добротности или П-контура обязательно. Это особенно актуально для трансиверов с широкополосными транзисторными выходными каскадами, нормальная работа которых возможна только на согласованную нагрузку. Безусловно, если выходной каскад трансивера имеет настраиваемый П-контур или антенный тюнер, и длина соединительного кабеля не превышает 1,5 м (т.е. представляет собой емкость для используемого диапазона частот), такой контур можно рассматривать как входной для РА. Но в любом случае применение П-контура на входе РА значительно снижает вероятность самовозбуждения на УКВ. Кстати, именно так реализовано подавляющее большинство РА с ОС, описанных в зарубежной литературе и выпускаемых промышленностью для коротковолновиков. Для радиолюбителей, задумавших создать РА мощностью 500 Вт и более, рекомендуется применение ламп, специально разработанных для линейного усиления радиочастотных сигналов в схеме с ОК. Особую актуальность данная рекомендация приобретает при использовании дорогостоящих "фирменных" трансиверов - в РА с ОС при самовозбуждении на входе присутствует значительная мощность ВЧ- или СВЧ-колебаний, что может привести к выходу из строя либо выходного каскада, либо входных цепей трансивера (в зависимости от коммутации цепи RX - ТХ в момент возникновения самовозбуждения). Увы, это не авторская фантазия, а реальные случаи из практики.

И еще одну проблему нельзя не затронуть, рассматривая ламповые РА - с легкой руки В.Жалнераускаса и В.Дроздова популярность приобрели схемы построения передающей части трансивера, когда после диапазонного полосового фильтра для возбуждения лампового усилителя используется линейное усиление радиочастотного сигнала транзисторными каскадами без промежуточной фильтрации. Конструктивно трансивер упрощается, но цена такой простоты - повышенное содержание побочных излучений при недостаточно тщательной настройке подобных схем.

Ситуация еще больше ухудшается, когда выходной мощности трансивера недостаточно для "раскачки", например в случае ГУ74Б с ОК с широкополосной входной цепью на трансформаторе 1:4. Необходимого усиления обычно добиваются дополнительным широкополосным каскадом . Если используется низкая ПЧ, и после двух-трехконтурного ДПФ передающий тракт имеет коэффициент усиления 40...60 дБ по мощности, а П-контур является единственной селективной цепью этого тракта, то не обеспечивается достаточное подавление побочных излучений. Последствия можно услышать на любительских диапазонах ежедневно, например вторые гармоники, почти равные по мощности основному сигналу. Послушайте, к примеру, участок 3680...3860 кГц, и почти обязательно услышите сигналы второй гармоники от SSB-станций 160-метрового диапазона. Собственно РА также обладает определенной нелинейностью, поэтому даже при подаче на него спектрально чистого радиочастотного сигнала на выходе неизбежно присутствуют гармоники. Одиночный П-контур можно рекомендовать при выходной мощности до 1 кВт. При большей мощности зарубежные любительские и промышленные РА используют П-L контур, изображенный на рис. 1 - коэффициент фильтрации у него в два раза выше.

Рассмотрим теперь схемные решения, демонстрирующие достаточно требовательный подход при конструировании РА.

Публикация знакомит нас с американской версией самодельного РА на ГУ74Б. George Т. Daughters, AB6YL, задумав переделать промышленный усилитель Dentron MLA2500, первоначально построенный на триодах по схеме с ОС, остановил свой выбор на лампе ГУ74Б (американское обозначение - 4СХ800А). Для этого проекта он посчитал оптимальным использование режима подачи сигнала возбуждения на управляющую сетку, где входная мощность рассеивается на пятидесятиомном резисторе между сеткой и общим проводом. Это позволило устранить необходимость в настроенных входных контурах и легко обеспечить широкополосность. Низкий импеданс цепи управляющей сетки помогает избежать самовозбуждения и обеспечивает выходному каскаду трансивера стабильную резистивную нагрузку с низким КСВ. Кроме того, очень популярный коммерческий усилитель ALPHA/POWER 91B с выходной мощностью 1500 Вт использует пару 4СХ800А в таком включении - это уже опробованная схема!

Схема усилителя приведена на рис. 2.


Большая входная емкость 4СХ800А (около 50 пФ) требует применения индуктивной компенсации, особенно на высокочастотных диапазонах. Проволочный резистор R1B 6 Вт/6 Ом обеспечивает необходимую индуктивность и дополняет совместно с безиндуктивными R1A и R1С сопротивление нагрузки до требуемого - 50 Ом/50 Вт. Согласно измерениям AB6YL, на частотах ниже 35 МГц входной КСВ - менее 1,1.

Энергетические показатели усилителя можно улучшить, подключая безиндуктивный резистор R2 сопротивлением до 30 Ом между катодом и общим проводом. Этот резистор обеспечивает отрицательную обратную связь, что позволяет снизить ток покоя и несколько улучшить линейность; уровень составляющих пятого порядка уменьшается при этом примерно на 3 дБ.

Параметры П-контура не приводятся, т.к. использованы компоненты от Dentron - MLA2500.

Накал 4СХ800А должен быть включен минимум за 2,5 минуты до подачи напряжений возбуждения и питания.

Технические условия на 4СХ800А/ ГУ74Б , поставляемые на американский рынок, рекомендуют напряжение смещения на управляющей сетке около -56 В при экранном напряжении +350 В. Источник питания управляющей сетки состоит из маломощного трансформатора Т2, включенного наоборот - на вторичную обмотку, используемую как первичная, подается напряжение 6,3 В от основного трансформатора Т1, что обеспечивает около 60 В переменного напряжения. На выходе параметрического стабилизатора VD9, R12 присутствует напряжение -56 В. Любой ток управляющей сетки вызывает нелинейные искажения, приводящие к splatter. Детектор тока сетки собран на операционном усилителе DA1, включенном по схеме компаратора. Когда ток сетки превышает несколько миллиампер, увеличивается падение напряжения на R16, вызывая срабатывание компаратора и свечение красного светодиода.

Экранная сетка питается от стабилизатора напряжения (VT1, VT2, VD7) с защитой от превышения потребляемого тока. Контакты реле К2 переключают экранную сетку между общим проводом (через R13) в режиме приема и напряжением +350 В в режиме передачи. Резистор R9 предотвращает броски напряжения при коммутации реле. Ток экранной сетки индицируется стрелочным прибором РА1, т.к. у тетродов ток экранной сетки - лучший индикатор резонанса и настройки, нежели ток анода. В режиме передачи анодный ток покоя должен быть 150...200 мА, при этом ток экранной сетки составляет около -5 мА (если используется прибор без нуля посередине, то стрелка переместится влево до упора). Усилитель работает в линейном режиме и не нуждается в ALC (пока нет тока управляющей сетки) при токе анода 550...600 мА и токе экранной сетки примерно 25 мА. Если ток экранной сетки при резонансе превышает 30 мА, необходимо увеличить связь с нагрузкой или уменьшить мощность возбуждения. При настройке усилителей на тетродах необходимо помнить, что ток анода увеличивается с ростом мощности возбуждения; ток экранной сетки максимален при резонансе или слабой связи с нагрузкой. Не следует, настраивая усилитель по максимальной выходной мощности, превышать значения параметров, указанных в ТУ для оптимальной линейности. Необходимая мощность возбуждения усилителя уменьшается на высокочастотных диапазонах. Это объясняется влиянием емкости катод - подогреватель, которая шунтирует резистор R2, уменьшая ООС. Необходимо помнить об этом, чтобы избежать перевозбуждения усилителя на 15 и 10 метрах. (Или применить ВЧ-дроссель в цепи накала. Прим. ред.)

Параметры усилителя при входной мощности около 45 Вт приведены в табл.1. (Значение выходной мощности, по-видимому, несколько завышено. Прим.ред.) Перед выключением усилителя после сеанса работы нужно оставить его в положении standby приблизительно на три минуты - вентилятор должен охладить лампу.

Табл.1
Напряжение анода 2200 В
Ток покоя анода 170 мА
Ток анода максимальный 550 мА
Ток экранной сетки максимальный 25 мА 0
Мощность рассеивания на аноде без сигнала 370 Вт
Мощность подводимая 1200 Вт
Мощность выходная 750Вт

Часть вторая

Стремление обеспечить надежную и долговечную работу высоколинейного усилителя мощности ярко продемонстрировал Mark Mandelkern, KN5S . Принципиальные схемы усилителя и вспомогательных цепей приведены на рис.3...8.

Не стоит удивляться обилию полупроводниковых приборов - их применение оправдано и заслуживает внимания, особенно применение схемы защиты. (Однако нельзя утверждать, что все они абсолютно необходимы. Прим. ред.)

При проектировании РА преследовались следующие цели:
- питание нагревателя лампы от стабилизированного источника постоянного тока; применение автоматических таймеров разогрева и охлаждения;
- измерение всех параметров, включая анодный ток и напряжение, без неудобных коммутаций;
- наличие стабилизированных источников смещения и экранного напряжения, допускающих подстройку напряжения в широких пределах;
- обеспечение работоспособности при значительных колебаниях напряжения сети (особенно это актуально при работе в полевых условиях от генератора электрического тока).

Источнику питания подогревателя мощных генераторных ламп редко уделяется должное внимание, а ведь он во многом определяет долговечность работы лампы и стабильность выходной мощности. Разогрев подогревателя должен происходить постепенно, не допуская бросков тока через холодную нить накала. В режиме передачи, когда происходит интенсивная эмиссия электронов, очень важно обеспечить постоянство напряжения накала и, соответственно, температуры катода. Вот основные причины применения для накала лампы стабилизированного источника питания с ограничителем потребляемого тока, который исключает бросок тока в момент включения.

Схема блока питания показана на рис.4 . Выходные напряжения допускают следующие диапазоны регулировки: от 5, 5 до 6 В (накал), от 200 до 350 В (экранная сетка) и от -25 до -125 В (управляющая сетка).

Стабилизатор напряжения накала использует популярную микросхему LN723 в типовом включении. Значительный ток накала тетрода 4СХ1000 (около 9 А) и соединение катода и подогревателя внутри лампы потребовали отдельных проводников большого сечения для сильноточной цепи (А- и А+); по цепи S- и S+ выходное напряжение подается на схему сравнения стабилизатора. Предохранитель FU1 на 10 А лучше всего запаять, а не использовать держатель.

Схема управления нагревателем показана на рис.5 . Схема исключает использование усилителя во время прогрева и защищает нагреватель от повышенного напряжения при неисправности стабилизатора. Защита обеспечивается отключением нагревателя с помощью реле К2 (рис.4). Кроме того, датчик воздушного потока через лампу SA2 (рис.4) контролирует работоспособность вентилятора. Если воздушный поток отсутствует, это также приведет к отключению реле К2 и стабилизатора напряжения накала.

Таймер разогрева (DA3 на рис.5) настроен на пять минут. По ТУ достаточно трех минут, но более длительный разогрев продлит жизнь лампы. Таймер запускается только после появления напряжения на нагревателе. Это определяет компаратор DA2.2, подключенный к точке S+. Так, например, если плавкий предохранитель сгорел, таймер не начнет работу, пока вы не замените предохранитель. При превышении напряжения (например при пробое регулирующего транзистора VT1) срабатывает триггер на DA2.3 и закрывается транзистор VT2, отключая напряжение от обмотки реле К2 (точка HR на рис.5). Конденсатор СЗ обеспечивает начальную установку триггера и, соответственно, открывание транзистора VT2 при подаче напряжения питания.

Наряду с таймером разогрева, усилитель нуждается в таймере охлаждения лампы перед выключением (DA4). При выключении усилителя цепь +12 В разряжается быстрее, чем цепь +24 В (имеющая минимальную нагрузку в режиме приема). На выходе DA2.1 появляется напряжение +24 В, и запускается таймер охлаждения. После запуска на выводе 7 DA4 присутствует низкий уровень напряжения, приводящий к срабатыванию реле К1 (рис.4), через контакты которого обеспечивается работа стабилизаторов +12/-12 В и +24 В. Приблизительно через три минуты на выводе 7 появляется высокий уровень, реле К1 возвращается в исходное состояние, и усилитель окончательно обесточивается. Цепь +24 RLY исключает работу таймера охлаждения, если по каким-либо причинам усилитель был выключен и сразу же включен. Например, прохождение радиоволн заканчивается и диапазон кажется мертвым - вы выключаете усилитель. Внезапно появляется интересный корреспондент - тумблер питания вновь в положении ON! При переходе в режим передачи напряжение +24RLY переводит DA2.1 в низкое состояние и сбрасывает таймер охлаждения.

Как и в случае с напряжением накала, стабилизатор напряжения экранной сетки редко удостаивается внимания при конструировании РА. А зря... Мощные тетроды из-за явления вторичной эмиссии имеют отрицательный ток экранной сетки, поэтому источник питания данной цепи должен не только отдавать ток в нагрузку, но и потреблять его при изменении направления. Последовательные схемы стабилизаторов этого не обеспечивают, и при появлении отрицательного тока экранной сетки транзистор последовательного стабилизатора может выйти из строя. Потеряв несколько высоковольтных транзисторов при настройке усилителя, радиолюбители приходят к решению установить мощный резистор сопротивлением 5...15 кОм между экранной сеткой и общим проводом, смирившись с бесполезным рассеиванием мощности. Применение параллельного стабилизатора напряжения, который может не только отдавать, но и принимать на себя ток, позволяет добиться безотказной работы, однако желательно использовать защиту от превышения тока.

Стабилизатор напряжения экранной сетки собран на транзисторах VT3, VT4 (рис.4). Вместо VT3 типа 2N2222A можно использовать высоковольтный, исключив параметрический стабилизатор R6, VD5, но при этом возможно ухудшение коэффициента стабилизации, т.к. высоковольтные транзисторы имеют невысокий коэффициент усиления. Выходное напряжение определяется суммой напряжения стабилизации VD11 и напряжения на переходах база-эмиттер транзисторов VT3, VT4 (15+0,6+0,6=16,2 В), умноженной на коэффициент, определяемый делителем напряжения R11,R12,R13 (12...20) на выходе стабилизатора.

Шунтирующий транзистор установлен непосредственно на алюминиевой пластине размерами 70х100х5 мм, которая, в свою очередь, крепится на боковой стенке с использованием керамических изоляторов. Резистор R7 ограничивает пиковый ток через шунтирующий транзистор VT4 величиной порядка 100 мА.

Схема ПРИЕМ-ПЕРЕДАЧА (рис.6) проверяет шесть сигналов: наличие воздушного потока через лампу (+12Н), состояние переключателя OPERATE-STANDBY, завершение разогрева накала, наличие анодного напряжения, наличие напряжения смещения и состояние схемы защиты от перегрузки. Схема коммутации прием-передача обеспечивает задержку срабатывания реле КЗ 50 мс (рис.4) при переходе на передачу и задержку отключения коаксиального реле 15 мс при переходе на прием. Если используются вакуумные реле, синхронизация реле может быть легко изменена для полного QSK.

Операционные усилители схемы коммутации прием-передача на рис.6 используют очень простые R-C цепи для получения задержки переключения. В режиме передачи на выходе DA1.4 присутствует напряжение порядка +11 В, что обеспечивает быстрый заряд конденсатора С4 через диод VD8 цепи коаксиального реле коммутации антенны Kant. Конденсатор С5 цепи реле питания экранной сетки заряжается при этом через резистор R26, поэтому экранное реле срабатывает позже. При переходе в режим приема на выходе DA1.4 появляется напряжение около -11 В, и происходит обратный процесс. Вход KEY позволяет уменьшить мощность рассеяния на аноде в паузах передачи и избежать изменения формы посылки CW-сигнала при работе с РА, но для этого необходимо, чтобы трансивер имел соответствующий выход. Схема блокировки при перегрузках (рис.7) срабатывает, когда ток управляющей или экранной сетки, или анода превышает значение 1 мА, -30 мА и 1150 мА соответственно. Схема защиты от перегрузки экранной сетки функционирует только при отрицательных токах. Ограничителем положительного тока экранной сетки является резистор R27 в схеме стабилизатора напряжения. Срабатывание схемы защиты от перегрузки (рис.8) вызывает отключение схемы ПРИЕМ-ПЕРЕДАЧА по цепи OL (рис.6), включение с помощью контактов реле К1 дополнительного резистора R2 в цепи смещения управляющей сетки, включение генератора на DA2.4 и мигание красного светодиода VD9 ПЕРЕГРУЗКА на передней панели.

От однополярного источника +24 В питается только микросхема DA2 (рис.5). Все другие операционные усилители используют напряжение питания +12/-12 В.

На рис.7 приведена схема измерения. Пять стрелочных приборов позволяют измерять с помощью дополнительных кнопок 10(!) параметров: прямую/отраженную мощность в антенне, ток/напряжение управляющей сетки, анодный ток/напряжение, ток/напряжение экранной сетки, напряжение/ток накала. Для считывания значений параметров, указанных через дробь, необходимо нажать соответствующую кнопку. Основные параметры считываются немедленно; вторичные параметры имеют большое значение только при начальной настройке и для подстройки после замены лампы. Самый простой неинвертирующий усилитель, используемый здесь - для измерения анодного напряжения (DA2.1). Допустим, что предел измерений должен быть 5000 В; делитель R7, R8 (рис.3) имеет коэффициент деления 10 000, т.е. 5000 В в точке HV2 - это 0,5 В. Резистор R9 не влияет на работу схемы, поскольку операционный усилитель имеет высокое входное сопротивление. При напряжении питания +12/-12 В максимальное выходное напряжение усилителя около +11/-11 В. Допустим, что +10 В выходного напряжения операционного усилителя соответствуют полному отклонению стрелки измерительного прибора при использовании резистора R22 10 кОм и прибора на 1 мА. Требуемый коэффициент усиления (10/0,5) равен 20. Выбрав R15=10к0м, находим, что резистор обратной связи должен иметь сопротивление 190 кОм. Указанный резистор составлен из подстроечного резистора R20 сопротивлением приблизительно в половину номинального значения и постоянного резистора R19, выбранного из ряда стандартных значений.

Схема измерения тока анода аналогична. Напряжение, пропорциональное анодному току, снимается с резистора отрицательной обратной связи R2 в цепи катода (рис.3). Конденсатор С2 обеспечивает демпфирование показаний измерительного прибора РАЗ при работе SSB.

Экранное напряжение измеряется аналогичным образом. Номиналы резисторов, определяющих коэффициент усиления схем измерения прямой и обратной мощности, зависят от конструкции направленного ответвителя.

Несколько иначе реализована схема измерения тока экранной сетки. Выше указывалось, что ток экранной сетки может иметь и отрицательные, и положительные значения, т.е. требуется измерительный прибор с нулем посередине. Схема реализована на операционном усилителе DA2.3 и имеет диапазон измерения -50...0...50 мА, используя для индикации обычный прибор с нулем слева.

При 50 мА положительного тока экранной сетки падение напряжения на резисторе R23 (рис.4) составляет -5В в точке -Е2. Таким образом, от операционного усилителя необходимо усиление -1, чтобы получить требуемое выходное напряжение +5 В для отклонения стрелки на половину шкалы. При R23=10 кОм резистор обратной связи должен иметь номинальное значение 10 кОм; используются подстроечный R32 и постоянный R30 резисторы. Для смещения стрелки прибора на середину шкалы при напряжении питания -12 В требуется коэффициент усиления +5/-12=-0,417. Точное значение коэффициента усиления и, соответственно, нуль шкалы, устанавливается подстроечным резистором R25.

На операционных усилителях DA2.2, DA2.4 реализована расширенная шкала измерения напряжения накала. Дифференциальный усилитель DA2.2 преобразует напряжение накала в однополярное, т.к. точка S не соединена непосредственно с общим проводом. Суммирующий усилитель DA2.4 реализует расширенный масштаб измерения - от 5,0 до 6,0 В. Фактически, это вольтметр с пределом измерения 1 В, смещенный к начальному значению 5 В.

В схемах выпрямителей применяемые диоды должны быть рассчитаны на соответствующий ток, остальные - любые импульсные кремниевые диоды. За исключением высоковольтных транзисторов, можно применять любые маломощные соответствующей структуры. Операционные усилители - LM324 или подобные. Измерительные приборы - РА1...РА5 с током полного отклонения 1 мА.

Приведенные схемы, безусловно, усложняют РА. Но для надежной повседневной работы в эфире и в соревнованиях стоит затратить дополнительные усилия на создание действительно качественного устройства. Если на диапазонах будет больше чистых и громких сигналов, то в выигрыше окажутся все радиолюбители. За QRO без QRM! Выражаю благодарность И.Гончаренко (EU1TT), советы и замечания которого оказали большую помощь при работе над статьей.

Литература

1. Бунимович С., Яйленко Л. Техника любительской однополосной радиосвязи. - Москва, ДОСААФ, 1970.
2. Радио, 1986, N4, С.20.
3. Дроздов В. Любительские KB трансиверы. - Москва, Радио и связь, 1988.
4. QST ON CD-ROM, 1996, N5.
5. http: //www.svetlana.com/.
6. QEX ON CD-ROM, 1996, N5.
7. QEX ON CD-ROM, 1996, N11.
8. Радиолюбитель. KB и УКВ, 1998, N2, С.24.
9. Радиолюбитель, 1992, N6, С.38.
10. ALPHA/POWER ETO 91B User"s Manual.

Г.ПЕЧЕНЬ (EW1EA) "КВ и УКВ" №9 1998 год

Из практики конструирования ламповых КВ усилителей

Наверное каждый радиолюбитель, особенно работающий на НЧ диапазонах, хотел бы иметь компактный усилитель мощности, с хорошим КПД, совместимый с современными КВ трансиверами, теперь, как правило, импортного производства, имеющий приличный внешний вид, который бы украшал и придавал солидность нашим радиошекам, а, самое главное, обладал высокой надёжностью и радовал своей работой.

Уж где - где, а слава Богу у нас в России есть такие прекрасные и вполне доступные радиолампы, как ГУ 50, ГИ 7 Б, ГМИ 11, ГУ 46, ГУ 43 Б, ГУ 91 Б, ГУ 78 Б и т. п., которые ценятся во всём мире. Ведь если грамотно подготовить радиолампу к эксплуатации, пускай она пролежала без дела не один десяток лет, и соблюдать необходимые требования и режимы работы, то одной такой лампы хватит на долгие годы. Выход из строя радиолампы по статике или броскам в питающей сети маловероятен при разумном построении схемы, радиолампа не боится рассогласования и продолжительных перегревов и перегрузок.

При разработке выходного каскада не надо перестраховываться и использовать трансформаторы в источниках питания, конденсаторы фильтров и другие радиоэлементы, превышающие по мощности, ёмкости и размерам необходимые величины, иначе это будет похоже на велосипед с колесами от грузовика. Вместо ожидаемых высоких параметров снизится надёжность, особенно в моменты включения высоковольтных источников и в первые секунды прогрева накала радиоламп. Конструкция должна строиться на основе разумного компромисса, учитывающего все стороны, только тогда возможно достичь высокой надежности, требуемых параметров, габаритов и веса.

Если все-таки по каким-то причинам используются такие радиоэлементы, то придётся усложнять схему и применять устройства сглаживающие экстратоки, использовать реле задержки времени, защищать компьютер от бросков в сети, если он используется. Но всегда надо помнить, что каждый лишний контакт, каждый лишний полупроводник – это элемент ненадёжности, особенно в выходном каскаде.

Хочется остановиться на цепях питания накала радиоламп. Надо правильно выбрать напряжение из большого допуска, указанного в паспорте, обеспечивающее долгосрочную работу радиолампы, не всякий из унифицированных трансформаторов подходит для этого.

Теперь существует множество диодов с прекрасными параметрами, а ВЧ элементы выходных каскадов военных радиостанций: катушки; панели для ламп; КПЕ, в том числе и вакуумные, с прекрасным перекрытием; переключатели; реле В2В, П1Д и т. п. Это конечно предел мечтаний. Если подойти к этому разумно и не ставить в каскад на ГУ 82Б катушку из шины 20 х 3, то можно получить вполне приемлемые размеры. Удобно использовать двухблочные конструкции, когда источник питания находится под столом, тогда сам выходной каскад получится компактнее.

Слаботочные реле, в том числе и герконовые, легко обеспечивают управление основными контакторами усилителя и сопряжение с трансивером, как по переключению диапазонов, так и по управлению приёмом/ передачей.

При проектировании каскада важно знать, будет ли он использоваться в контестах, эксплуатироваться в режимах FM, CW и т. п., или каскад предназначен чисто для повседневного радиолюбительского общения. Всё это влияет на вес, габариты, режимы обдува. Может выручить правильный выбор схемы включения радиолампы с общим катодом или общей сеткой, это имеет очень важное значение!!!

Нежелательны такие режимы, когда с трёх ГУ 50 получают 500 W в антенне, в этом случае придётся иметь запас ламп. Смысла в этом нет, потому что существуют более мощные лампы, и тем более, к примеру, если у вас была мощность в 300 W, а вы её увеличили до 500, то почти никто этой прибавки в 2 db (0,3 балла) не заметит.

Не лишним бывает установка на передней панели хотя бы светодиодов, контролирующих токи сеток, и свидетельствующих о работе каскада в соответствующих режимах.

Полюбившаяся многим конструкторам схема с параллельным питанием анодной цепи оправдывает себя при использовании ламп с небольшой выходной ёмкостью и начальной ёмкостью анодного КПЕ, но и она имеет свои сложности – надо правильно выполнить анодный дроссель, важно знать его резонансную частоту, которую можно определить с помощью ВЧ вольтметра. Резонансная частота дросселя не должна быть вблизи радиолюбительских диапазонов. Желательно где-то оговорить запрет на передачу на этой частоте, иначе при современных трансиверах со сплошным перекрытием до 30 МГЦ, повернув ручки валкодера на резонансную частоту дросселя можно вывести из строя усилитель мощности.

Если в УМ используется лампа с большой выходной ёмкостью в десятки пФ типа ГУ 81 и при высоком анодном напряжении, увеличивающем Rэ или с использованием КПЕ с большой начальной ёмкостью, желательно применять схему с последовательным питанием анодной цепи, использовать не полное включение элементов колебательной системы. Перед органами настройки выходного каскада надо ставить качественные ВЧ конденсаторы большой ёмкости на напряжение не менее удвоенного анодного, для того, чтобы убрать постоянную составляющую, и, в то же время, не снизить ёмкости КПЕ. К переключателю диапазонов в такой схеме предъявляются повышенные требования, т. к. он находится под высоким напряжением и должен быть надёжно изолирован от корпуса, а ось ручки управления разделена диэлектрической ВЧ вставкой.

Исходя из многолетних наблюдений, ничего отрицательного об использовании в УМ небольшой мощности – до 1 KW электролитических конденсаторов в источниках анодного напряжения – сказать не могу. Необходимо только следить за тем, чтобы напряжение на каждом конденсаторе было не более чем 85%, от напряжения указанного на корпусе конденсатора, и стараться не размещать электролитические конденсаторы вблизи греющихся элементов каскада. Были случаи выхода из строя конденсаторов типа К 50-17 1000мкф/400в и т.п., где выходные медные клеммы имеют алюминиевые заклёпки - со временем, естественно, контакт нарушается. Понятно, что в более мощных выходных каскадах, использование металлобумажных и конденсаторов комбинированного типа (К 75) предпочтительнее.

Понятно, что все тонкости оговорить сложно, но если учитывать хотя бы эти моменты, то каскад будет работать надёжно, линейно, не расширяя полосы, и не создавая внеполосных излучений. Наверняка у многих радиолюбителей всё это так и сделано. Но нормальную работу даже такого каскада можно легко испортить, увеличив сверх нормы уровень сигнала с трансивера или исказив входной сигнал чрезмерной компрессией и перегрузкой по микрофонному входу.

Как и в любом деле, не надо ожидать быстрых результатов и первые десятки конструкций будут не совсем удачны, как-то: не оптимальное соотношение габаритов, веса, выходной мощности, дизайна в целом, работ систем охлаждения, расположения органов управления и контроля, удобства пользования, надежности каскада при колебаниях питающей сети, повышенных температур, работе на нестандартные нагрузки и т.п. Но с годами наблюдений, анализа, работ над ошибками и конечно ежедневного труда, наверняка что-то начнёт получаться.

Теперь немного о психологических моментах. Можно услышать такие рассуждения: «Вот раньше у меня был УМ на ГК 71, вот это вещь, а теперь на ГУ 13 меня никто не слышит». Это конечно смешно, но у человека укоренилось такое заблуждение, ему трудно доказать, что это одно и тоже, и что это из области «когда деревья были большими». Не верьте этим иногда приятным воспоминаниям и впечатлениям, а верьте только стрелке измерителя мощности на выходе вашего каскада. Я естественно опускаю все разговоры об антеннах и о прохождении, как о само собой разумеющемся и играющем свою важную роль.

Хочу привести такие наблюдения:

  • если вы увеличили мощность в два раза, например, со 100 до 200 W, то практически никто этого не заметит, а скажут: «Наверное QSB»;
  • если увеличили мощность в 4 раза – получили прибавку в 1 балл (6 db), но даже на это обратит внимание не каждый, а только опытный корреспондент;
  • увеличение мощности в 10 раз более 1,5 балла (10 db) замечают практически все, правда оценки могут быть от 3 до 20 db;
  • в 16 раз – 2 балла (12 db), отдают должное работе выходного каскада;
  • увеличение мощности в 64 раза это 3 балла (18db), комментарии излишни, а оценки могут быть от 10 до 40 db.

Подобные эксперименты нужно проводить очень оперативно, для минимизации влияния QSB, четко обозначать положения и обязательно следить за согласованием и реальной отдачей в антенну, при каждом включении.

Учитывать это надо для того, чтобы не возлагать необоснованных надежд на тот или иной выходной каскад, а реально оценивать его возможности и представлять, какой эффект это будет иметь.







Более подробно можно ознакомиться: www.afaru.ru/rz3ah

А. РОГОВ ( RZ3AH)
г. Москва тел. 909–50–13