Мощные одномодовые волоконные лазеры. Волоконный лазер, его преимущества Волоконный лазер, его базовые технологии

Благодаря оптимизации оптического одномодового волокна для использования в волоконно-оптических лазерах достигнута выходная мощность 4,3 кВт с высокой масштабируемостью, а также определены основные направления дальнейших исследований в области разработки приложений для сверхбыстрых лазеров.

Одной из актуальных проблем развития лазерных технологий является рост мощности волоконных лазеров, которые уже «отвоевали» долю рынка у мощных CO 2 -лазеров, а также объемных твердотельных лазеров. В настоящее время крупные производители волоконных лазеров уделяют пристальное внимание разработке новых приложений, рассматривая на перспективу дальнейшее завоевание рынка. Среди представленных на рынке мощных лазеров одномодовые системы оснащены рядом функций, которые делают их наиболее востребованными - они обладают самой высокой яркостью излучения, их можно сфокусировать до нескольких микрон, что делает их более пригодными для бесконтактной обработки материалов. Производство таких систем довольно сложное. Компания IPG Photonics (Oxford, MA) предложила разработку одномодовой системы мощностью 10 кВт, но информация о характеристиках луча отсутствует и данные, в частности, о любых возможных многомодовых компонентах излучения, которые могут существовать наряду с одномодовым сигналом, также не представлены.

Немецкие ученые из Университета Фридриха Шиллера и Института прикладной оптики и точной инженерии Фраунгофера при финансовой поддержке правительства Германии, а также в сотрудничестве с TRUMPF, Active Fiber Systems, Jenoptik, Лейбницским институтом фотонных технологий проанализировали проблемы масштабирования таких лазеров и разработали новые волокна для преодоления ограничений мощности. Команда успешно завершила серию испытаний, продемонстрировав одномодовый выходной сигнал мощностью 4,3 кВт, в котором выходная мощность волоконного лазера ограничивалась только мощностью сигнала накачки.

Факторы, ограничивающие мощность излучения одномодового волоконного лазера

К основным задачам, требующим тщательной проработки можно отнести следующие: a) улучшенная накачка; б) разработка активного волокна с низкими оптическими потерями, работающими только в одномодовом режиме; в) более точное измерение полученного излучения. Предположим, что задача улучшенной накачки может быть решена с помощью сверхъярких лазерных диодов и соответствующих методов подвода накачки, и поэтому в данной статье более подробно рассмотрим две другие.

В рамках разработки активного волокна для высокомощного одномодового режима работы были выбраны два набора параметров оптимизации: легирование и геометрия. Все параметры должны быть четко определены для получения минимальных потерь, одномодового режима и мощного усиления. Идеальный волоконный усилитель должен обеспечить высокий коэффициент преобразования - более 90%, отличное качество луча и выходную мощность, ограниченную только доступной мощностью накачки. Однако модернизация одномодовой системы до более высоких мощностей может привести к большей плотности мощности внутри активной зоны самого волокна, увеличению тепловой нагрузки и ряду нелинейных оптических эффектов как, например, вынужденное Рамановское рассеяние (SRS) и вынужденное рассеяние Бриллюэна (SBS).

Поперечные моды могут усиливаться в зависимости от размера активной зоны волокна. Чем меньше активное сечение волокна, тем меньше количество таких мод - при заданном соотношении между сечениями волокна и оболочки. Однако меньший диаметр определяет и более высокую плотность мощности, а при сгибании волокна, например, добавляются еще и потери для более высоких мод. Тем не менее при большом диаметре ядра волокна и при тепловой нагрузке могут возникать другие моды излучения. Такие моды подвержены взаимодействию между собой во время усиления, а, следовательно, без оптимальных условий распространения, выходной профиль излучения может стать пространственно или временно неустойчивым.

Нестабильность поперечного режима

Волокна, легированные Иттербием (Yb), являются типичной рабочей средой для мощных одномодовых волоконных лазеров, но за пределами определенного порога они показывают совершенно новый эффект - так называемый эффект неустойчивости поперечной моды (TMI). При определенном уровне мощности внезапно могут появиться более высокие моды или даже моды оболочки. Энергия динамически перераспределяется между ними, а качество луча ухудшается. Проявляется флуктуация излучения на выходе (пучок начинает колебаться). Эффект TMI наблюдался в различных конструкциях волокон - от волокон с шаговым индексом преломления до фотонно-кристаллических волокон. Его пороговое значение зависит от геометрии и легирования, но грубая оценка свидетельствует о том, что этот эффект проявляется при выходной мощности, превышающей 1 кВт. В процессе исследования была выявлена зависимость TMI от фотозатемнения, его связь с тепловыми эффектами внутри волокна. Более того, восприимчивость волоконных лазеров к TMI также находится в зависимости от модального содержания ядра.

Геометрия волокна с шаговым индексом преломления дает возможность для оптимизации. Для накачки могут быть подобраны: диаметр волокна, размер оболочки волокна накачки и другие показатели преломления волокна и оболочки. Все эти параметры настройки зависят от концентрации легирующей примеси, то есть концентрация ионов Yb может быть использована для управления длиной участка поглощения излучения накачки в активном волокне. Другие же добавки могут быть введены в волокно для снижения тепловых эффектов и управления коэффициентом преломления. Однако имеют место некоторые противоречия. Чтобы уменьшить нелинейные эффекты, волокно должно быть короче, а для снижения тепловой нагрузки волокно должно быть длиннее. Фотопотемнение пропорционально концентрации легирующей примеси, поэтому более длинные волокна с более низкой концентрацией легирующего элемента определенно будут лучше. Представление о некоторых параметрах можно получить в ходе эксперимента. Тепловое поведение, например, можно моделировать, но довольно трудно предсказать, так как фотозатемнение является малым по определению и не может быть физически измерено при ускоренных испытаниях. Поэтому прямые измерения теплового поведения в волокнах могут быть полезны для планирования экспериментов. Для типичного активного волокна показаны в сравнении: измеренная тепловая нагрузка (получена от одновременно распределенных температурных измерений внутри волоконного усилителя) и моделируемая тепловая нагрузка (Рисунок 1).

Рисунок 1. Измеренная тепловая нагрузка активного волокна по сравнению с моделируемой нагрузкой с дополнительной потерей и без нее

Еще одним важным для проектирования волокна параметром является длина волны отсечки, то есть самая большая длина волны, увеличивающая количество мод в волокне. Более этой длины волны моды высшего уровня не поддерживаются.

Испытание новых волокон на киловаттную мощность

В ходе эксперимента были исследованы два типа волокон, легированных Yb. Волокно №1 диаметром сердцевины 30 мкм с дополнительным легированием фосфором и алюминием. Волокно №2 меньшим диаметром - 23 мкм, было менее легировано, но содержало больше иттербия с целью достижения более высокого коэффициента профиля по сравнению с волокном №1 (Табл.1).

Таблица 1. Параметры тестируемых волокон

Рассчитанная длина волны отсечки расположена около 1275 нм и 1100 нм для волокон 1 и 2 соответственно. Это намного ближе к одномодовому варианту излучения, чем типичному волокну с диаметром сердцевины 20 мкм и числовой апертурой (NA) 0.06, имеющей длину волны отсечки ~1450 нм. Усиленная длина волны лазера в результате была центрирована на 1067 нм.

Оба волокна были испытаны в схеме высокомощной накачки (Рис.2). Диодный лазер накачки и начальный сигнал были соединены в свободном пространстве в волокно с приваренными концевиками и соединителями, омываемые водой для охлаждения. Источником излучения был фазомодулированный диодный лазер с внешним резонаторным (ECDL), сигнал которого был предварительно усилен для достижения мощности входного сигнала до 10 Вт при длине волны 1067 нм и ширине спектра 180 мкм.

Рисунок 2. Экспериментальная установка усилителя большой мощности, используемая для теста волоконного усилителя, где волокно накачивалось при 976 нм в направлении встречного распространения

В процессе тестирования первого волокна наблюдались внезапные колебания в миллисекундном масштабе при пороге 2,8 кВт, что можно отнести к TMI. Второе волокно длиной 30 м, на той же длине волны и ширине спектра, накачивалось до выходной мощности 3,5 кВт, ограниченной уже SBS, а не TMI.

В третьем эксперименте спектр лазера излучателя был изменен для увеличения порога SBS волокна посредством расширения спектра (выше, чем в предыдущем эксперименте). Для этого второй диодный лазер с центральной длиной волны 300 мкм совмещался с первым. Эта интерференция привела к временным колебаниям, которые позволили увеличить мощность сигнала вследствие автофазовой модуляции. В том же основном усилителе, что и раньше, были получены очень близкие значения выходной мощности при эффективности в 90 %, но их можно было увеличивать только до 4,3 кВт без проявления TMI (Табл. 2).

Таблица 2. Результат тестирования волокна

Задачи измерения

Измерение всех параметров высокомощного волоконного лазера является одной из основных задач и требует специального оборудования для их решения. Для получения полной характеристики волокна определяли концентрацию легирующей примеси, профили показателя преломления и затухание сердечника волокна. К примеру, измерение потерь в сердечнике для разных диаметров изгиба является важным параметром для корреляции с порогом TMI.

Рисунок 3. а) Трассировка интенсивности фотодиода при тестировании выходного сигнала с использованием волокна 1, ниже и выше порога ТМI. b) Нормализованное стандартное отклонение трасс фотодиода при разной выходной мощности

Во время тестирования волоконного усилителя порог TMI определен с помощью фотодиода путем отвода малой доли мощности. Начало колебаний мощности оказалось довольно резким и существенным (Рис.3), особенно значительным изменение сигнала было при тестировании волокна 1, но он не был обнаружен при тестировании волокна 2 до уровня мощности 4,3 кВт. Соответствующая зависимость показана на Рисунке 4а.

Рисунок 4. а) Наклон эффективности волокна 2 до выходной мощности 4,3 кВт. b) Оптический спектр с выходной мощностью 3,5 кВт с отношением 75 дБ от выходного сигнала к ASE. Ширина спектра 180 мкм с выходной мощностью 4,3 кВт, расширенной до ширины полосы 7 нм

Измерения качества луча являются наиболее сложной частью характеристики волоконного лазера и заслуживают отдельного обсуждения. Вкратце, затухание без участия термических эффектов является ключевым и может быть организовано с использованием отражений Френеля или оптикой с малыми внутренними потерями. В экспериментах, представленных в данном обзоре, затухание вводилось с использованием клиновых пластин и импульсной накачки в масштабе времени, превышающем время наступления TMI.

Приложения в быстроразвивающейся науке

После десятилетнего затишья представляется вполне реальной разработка мощных одномодовых волоконных лазеров нового поколения киловаттного класса с отличным качеством луча. Уже достигнута выходная мощность 4.3 кВт, лимитированная только мощностью накачки, определены основные ограничения на пути дальнейшего развития и понятны способы их преодоления.

Мощность почти в 1 кВт уже была достигнута на одном волокне при усилении сверхбыстрыми лазерными импульсами, поэтому увеличение до 5 кВт вполне возможно благодаря комбинированию методов. В связи с тем, что системы разрабатываются для исследовательских центров, например, для ELI (Прага, Чешская Республика) - для промышленных систем остается еще непростой задачей дальнейшая разработка надежных средств передачи оптического сигнала.

Проделанная работа определила ряд интересных перспектив. С одной стороны, это передача результатов в производство, несмотря на то, что еще требуется приложить большие усилия в данном направлении, а с другой стороны, технология крайне важна для наращивания параметров других волоконно-оптических лазерных систем, например, для фемтосекундных волоконных усилителей.

По материалам http://www.lightwaveonline.com

В ранее опубликованных статьях по тестированию технологического потенциала, волоконный лазер был разобран наиболее эффективное технологическое применение, а именно: резка, сварка, закалка, перфорация и очистка поверхности. Всё это может делать волоконный лазер.

Однако менеджерам и технологам промышленных предприятий крайне важно понимать помимо этого и экономические аспекты внедрения волоконного лазера в современных лазерных технологиях. Итак, давайте обсудим экономические вопросы про волоконный лазер, возникающие во время оценки проектов технического перевооружения.

Сразу необходимо отметить: отличия очень важны, так как новый волоконный лазер обладает целым рядом технических свойств и особенностей, из-за которых переносить на новую технику опыт применения классических лазеров не совсем корректно. Именно поэтому целесообразно начать, что такое волоконный лазер, прежде всего, с изложений данных особенностей и отличий.

Волоконный лазер:

Уникальный ресурс современных излучателей (более 100 000 часов с вероятностью продления ресурса при относительно небольших затратах) и практически нулевые эксплуатационные затраты. Обязательно с учетом фактического исключения части амортизации через ЕСН и НДС в существующей налоговой системе. Так как это может быть чрезвычайно важным экономическим фактором (т. е. часть амортизации остается непосредственно в вашем распоряжении потому что – не используется).

Минимальные затраты и время на подготовку помещения и пуско-наладку. Волоконный лазер в процессе пусконаладки называется термином «инсталляция».

Волоконный лазер, его невероятная универсальность лазерного источника. Как правило, волоконный лазер это образец источника «чистой» лучевой энергии, поэтому в нем самом практически нет технологической специфики, то есть – при диверсификации либо другой перестройке производства, волоконный лазер можно переориентировать с одного технологического процесса на иной. Такой источник можно даже назвать, конечно (с оговорками) – ликвидным, в том значении, что он сохраняет ценность и стоимость сам по себе. Отсюда начинают развиваться определенные сервисы обмена лазеров и лизинга (по этим вопросам целесообразнее всего контактировать напрямую с производителем).

Волоконный лазер, его главные характеристики:

Его вероятность наращивания мощности. Можно купить волоконный лазер с конструктивным запасом, к примеру, при поставке на мощность в 700 Вт, а затем просто докупить специальные блоки накачки, тем самым увеличить мощность, например, до 2400 Вт. При этом в производственной системе (процесс установки дополнительных блоков продолжается не более 3-х часов) – практически не нужно ничего менять. Это позволяет достаточно существенно снизить начальные капитальные вложения, а также нарастить производительность в необходимый для вашего производства момент.

Транспортировка излучения непосредственно по оптическому кабелю, длина которого составляет от 10 до 100 метров, в значительной степени упрощает проектирование, а так же компоновку технологических систем в целом. Можно использовать огромнейший ассортимент промышленной робототехники. Стоит отметить, что для осуществления некоторых производственных задач требуется всего лишь 3 компонента, а именно – волоконный лазер/технологическая головка/промышленный робот. Конечно, при отсутствии опыта все равно потребуются услуги фирмы-интегратора, однако суммарные затраты на организацию специфической производственной системы существенно снизятся.

Волоконный лазер это многофункциональный и многоцелевой технологический участок для максимальной загрузки лазерного источника. Естественно это не совсем легко как может показаться на первый взгляд, но вполне реально. А ввиду важности этой вероятности мы обсудим ее далее.

Вопрос специалистов и кадров в целом. Волоконный лазер избавляет предприятие от нужды содержать целый штат специалистов со знаниями сферы оптики, вакуумных систем и электрических разрядов. Волоконный лазер, для эксплуатации его ничего не требуется, так как обучение оператора занимает всего времени не более 1-ой недели. Конечно, это не избавит предприятие от потребности в грамотных технологах, но это уже другой вопрос, который непосредственно к самому лазеру совершенно не имеет отношения. Вполне можно задействовать существующий персонал и заодно обрести более качественный уровень производственной эффективности эффективности.

Волоконный лазер, его базовые технологии:

Эти 7 пунктов сами по себе способны вызвать высокий интерес к новому современному оборудованию. Для усиления эффекта следует перечислить некоторые базовые технологии:

  • лазерная резка металлов. Речь идет не только о классическом раскрое листа, но и весьма объемная резка, к примеру, с применением промышленных роботов;
  • лазерная перфорация (фильтрующие элементы, сетки) ;
  • лазерная сварка. Прежде всего, это шовная стыковая сварка высокой производительности без использования разделок кромок и присадочных материалов. Но сегодня технологи достаточно стремительно развивают гибридные процессы, то есть – комбинированные схемы сварки совмещением лазерного пучка и соответственно электрической дуги;
  • лазерная закалка (термообработка) – это процесс, который обеспечивает локальную закалку определенных фрагментов детали без основательного термического влияния на деталь;1
  • лазерная наплавка – это аналог действия дуговой наплавки, отличающийся высокой локальностью и точностью;
  • лазерная очистка от покрытий и загрязнений. Самый экологически чистый метод очистки, причем бесконтактный который потенциально способен конкурировать с массовыми технологиями, например, такими как пескоструйная чистка.

Переходя непосредственно к экономическим аспектам, стоит заметить что волоконный лазер, его система в настоящее время на порядок дороже классических лазеров СО2 и поэтому цена самого лазера составляет обычно значительную часть технологической системы в целом.
Волоконный лазер, в его минимальный набор входит: оборудования предназначенного для выполнения технологической операции лазером входят:

  • волоконный лазер обязательно с указанной стоимостью руб./кВт;
  • волоконный лазер имеет специальную лазерную технологическую головку, которая формирует поток излучения, а также потоки иных веществ непосредственно в зоне обработки;
  • манипулятор (роботизированный) для перемещения изделия или лазерной головки, а так же для общего и тщательного управления процессом. Если же применить уже готовый и универсальный волоконный лазер, соответственно затраты будут напрямую зависеть от комплектации и конечно же бренда.

Волоконный лазер его минимальный набор для лазерной технологической системы таков: 1 – лазер, 2 – технологическая головка, 3 – оптический кабель, 4 – манипулятор.

Таким образом, на технологическую систему обладающую мощностью в 1000 Вт, базовая сумма капитальных расходов составит примерно около 6 млн. руб. РФ. На самом деле это еще не все затраты, так как необходимо еще учесть затраты на программное обеспечение, на интеграцию, подготовку помещения и производства. Поэтому наиболее разумным для простоты расчетов будет предположить, что себестоимость вложений в целом – волоконный лазер, составит ориентировочно 2 цены. Подобная пропорция наблюдается в частности по лазерным станкам предназначенных для раскроя металла. Волоконный лазер обладает мощностью в 2000 Вт варьируются от 12-ти до 14-ти миллионов российских рублей. При этом лазерное раскройное оборудование представляет собой довольно-таки большую комплексную систему, имеющую большие габариты. Однако благодаря серийности и стандартной, хорошо обкатанной технологии – цена заметно снижается.

В прочих технологических процессах (например, таких как сварка, закалка) комплекс такого оборудования может быть значительно проще, но здесь стоит учесть, что на данном этапе такие технологии совершенно не пакетированы в типовые серийные комплексы (то есть в этом случае возникнут затраты на технологию и инжиниринг, причем весьма существенные). Поэтому коэффициент х2 для широкого класса использований при средней степени автоматизации (т. е. процесс обработки автоматический, а загрузка-выгрузка или полуавтоматическая или ручная) – может быть оправданным.

Экономика лазерных технологий путем анализа 2-х тестовых производственных задач

Рассмотрим первую производственную задачу, про волоконный лазер:

Итак, в качестве 1-ой тестовой задачи давайте рассмотрим массовое производство деталей цилиндрической геометрии, в которых потребно выполнить сварку 2-х полукорпусов в единый (цельный) герметичный корпус. Это стандартная задача изготовления различного вида фильтров. Сталь толщиной в 0,5-1 мм, при этом средний диаметр изделия составляет 60 мм. Цель задачи – максимальный производительный объем при минимальной себестоимости изделия.

Под эту задачу сама производственная система синтезируется практически автоматически. Для быстрой лазерной сварки подобного изделия нужно с помощью волоконного лазера мощностью примерно в 700 Вт (т. е. линейная скорость сварки составляет, порядка 50 мм/сек.), необходима довольно-таки простая сварочная головка, вращатель изделия (автоматизированный) и соответственно система загрузки-выгрузки заготовки. Для системы загрузки возможно применение простейшего лоткового питателя. Волоконный лазер, предполагается, что изделия, предназначенные под сварку, предварительно уже собраны рабочими. Однако в зависимости от уровня качества непосредственно заготовок (калибровка размеров) вполне может понадобиться система коррекции по стыку изделий – положения сварочной головки. В целом расходы на разработку и соответственно изготовление такой достаточно несложной системы укладываются примерно в 5 млн. руб.

Можно сделать небольшой вывод, после изложенного текста:

  • Экономические параметры системы значительно ухудшаются при уменьшении уровня загрузки оборудования и конечно персонала: при выпуске, к примеру, 10% изделий/деталей от предельной цифры производственного процесса себестоимость просто-напросто вырастет в 10 раз. Таким образом, в обоих случаях недогруженное достаточно дорогое оборудование и соответственно персонал сидит без работы.
  • В плане себестоимости так же ничего не дает и отказ от автоматизации: переход к неавтоматизированным технологическим процессам тоже увеличит себестоимость изделий, причем резко. Это произойдет из-за общего снижения производительности труда.
  • Использование лазерной технологии позволяет «выиграть» только лишь при максимальной загрузке (или хотя бы при близкой к максимуму) производственной системы и выгодной непосредственно для условий самого производства, причем крупносерийного. Чрезвычайно важным для подобных производств является высокое качество процесса лазерной обработки (т. е. воспроизводимость и стабильность).

Понятно, что для крупносерийных задач окупаемость сварки волоконный лазер может быть довольно-таки быстрой благодаря резкому росту общей производительности.

Рассмотрим вторую производственную задачу, про волоконный лазер:

Как правило, для многих реальных предприятий характерна существенно меньшая серийность, поэтому будет постоянно возникать проблема загрузки источника для лазера.

К примеру, некое предприятие изготавливает комплексное изделие, которое состоит из цилиндрического корпуса и к нему необходимо приварить крышку с мощным элементом крепления, а непосредственно к самой крышке еще нужно приварить 2 элемента. Внутри такого изделия также имеется шток, функционирующий в режиме истирания, поэтому требующий упрочнения, а так же фильтр для жидкости, исполненный в виде кольца к которому припаяна металлическая сетка. Предполагаемая серийность подобных изделий – 100 000 в год.

При типовой базовой технологии изготовления изделий применяются такие технологические процессы как:

  • изготовление поковок предназначенных для головки имеющей проушину;
  • сложная механизированная обработка поковки;
  • вырезка отверстий (нескольких) в корпусе механическим методом;
  • вварка в отверстия необходимых деталей;
  • приварка головки к основному корпусу – ручная дуговая, наблюдается большой процент брака, причиной которого является, в том числе и нарушения геометрии (т. е. смещение оси головки и оси цилиндра);
  • объемная закалка штока, хромирование и шлифовка;
  • вырезка кольцевой сетки;
  • последующая припайка сетки по внешнему и внутреннему контуру (достаточно трудно автоматизируемый процесс с высоким уровнем брака).

Изделие данной тестовой задачи: 1 – корпус, 2 – крышка, 3 – привариваемая деталь, 4 – кольцо с отверстиями, 5 – фильтрующая сетка. Волоконный лазер:

Можно ли применять волоконный лазер для выполнения либо упрощения технологического процесса в производстве такого изделия? Суть идеи состоит в следующем: использовать волоконный лазер непосредственно в режиме деления времени, тем самым загружать его ресурс разнохарактерными операциями. С технической точки зрения такая возможность существует, однако технические аспекты этого, мы обсудим в конце повествования.

По параметрам лазерной технологии волоконный лазер из базы данных мы оцениваем, прежде всего, то, что нам понадобится лазерный источник мощностью в 1500 Вт. Это, безусловно, минимальная мощность, которая требуется для надежной сварки элементов. Так как планируется многофункциональное применение лазера, то цена робототехнического оборудования, как правило, должна быть выше.

Необходимо упомянуть и крайне важное интегральное преимущество: рост уровня качества изделия является чрезвычайно важным и значимым конкурентным фактором непосредственно на рынке сбыта, что позволяет занять значительную его долю.

Стоит особенно подчеркнуть, что волоконный лазер его утилитарная осуществимость всех планируемых технологических процессов при использовании его уже проходила соответствующее тестирование и предварительные экспериментальные данные этих процессов – имеются.

Таким образом: волоконный лазер, его комплексное использование набора лазерных технологий вполне реально может дать довольно-таки большой суммарный эффект, но при условии, если лазерное оборудование будет полностью загружено!

Себестоимость лазерного варианта производства рассчитана только лишь при заниженном значении расходов промышленного предприятия, но при честном расчете стоимости минуты отлично видно, что запас рентабельности такого проекта настолько велик и очевиден, что он существенно выгоден даже при больших нормативах накладных расходов – и это факт!

Стоит также отметить волоконный лазер: проектант лазерной системы может предложить поделить технологическую функциональность на 2 лазерных комплекса ассиметрично (т. е. не поровну)- 1-й лазерный комплекс выполняет исключительно вырезку отверстий и сварочные работы, а 2-й остальные операции по изготовлению фильтров и закалке штоков. Либо же может оставить только лишь первый комплекс, который выполняет операции по первым двум факторам, ввиду их основного вклада в прибыльность проекта в целом. Волоконный лазер, эти решения однозначно будут определяться во многом так же и техническими моментами, а именно вопросами: «Как именно реализовывается многофункциональность?» - «Действительно ли это можно воплотить технически?» - «К каким непосредственно проблемам это может привести?». Рассмотрим варианты и возможности.

Волоконный лазер и его применение:

Использование робота с помещенной на его манипуляторе головкой лазера для предоставленной тестовой задачи – вполне удачное решение. В первую очередь робот способен автоматически с минимальной тратой времени на переходы осуществить приварку кольца к основной крышке со всех 4-ех сторон, а во время изготовления элементарного роторного позиционера продукции со съемом и ручной установкой будут минимизированы также и потери времени непосредственно на загрузку-выгрузку. Что, конечно же, правильно и для остальных операций резки и сварки.

Применение универсальных роботов обладает тем преимуществом, что затраты на проектирование, а затем изготовление нестандартного технологического оснащения и оснастки – практически исключаются. Так как основная тяжесть производственной подготовки ложится именно на подготовку определенных программ для робота, то есть его эффективности.

ПРИМЕНЕНИЕ МНОГОПОСТОВЫХ УЧАСТКОВ.

Данное решение требует разработки абсолютно для всех технологических операций отдельного технологического поста, который снабжен узкофункциональным манипулятором. Вслед за завершением определенной операции лазерная головка, соединенная оптическим кабелем с лазером, переустанавливается на иной технологический пост, переналаживается соответственно на другую операцию, выполняющуюся на этой же либо иной партии изделий.

Следом за завершением определенной операции волоконный лазер его лазерная головка, соединенная оптическим кабелем с лазером, переустанавливается на иной технологический пост, переналаживается соответственно на другую операцию и осуществляется обработка другой операции, выполняющаяся на этой же либо иной партии изделий.

Волоконный лазер, к огромному сожалению, иметь персональные лазерные технологические головки на разных постах пока что не представляется возможным. Так как отстыковка от головки оптического кабеля в цеховых условиях строго запрещена по причине запыленности, потому как малейшая пылинка из оптического волокна, при попадании на оптический выход, как правило, приводит этот выход к безвозвратному разрушению. Решение данной проблемы с нетерпением ждут все предприятия с подобным оборудованием, и возможно уже в ближайшем будущем оно все-таки будет найдено.

ПРИМЕНЕНИЕ ОПТИЧЕСКИХ МУЛЬТИПЛЕКСОРОВ

Новая возможность, в настоящее время еще редко используемая. Главная суть ее в следующем: можно приобрести определенный спец-коммутатор лазерного пучка, соединенный своим входом с лазером, а на отдельных постах несколькими выходами с технологическими головками. Переключение излучения происходит достаточно быстро между постами, и такая система способна свести к минимуму утраты времени на смену изделий и технологические переходы.

Для этого система верхнего уровня обязана обеспечивать диспетчерские функции, а также распределять ресурсы лазерного источника непосредственно по запросам этих технологических постов. Так как в расчетах для формирования мы полагали: время загрузки-выгрузки, по меньшей мере, равно времени операции, в таком случае при применении подобного мультиплексора для реализации тестовой программы производства примерно 100 000 изделий будет достаточно всего одного лазера.

Себестоимость такого мультиплексора около 1-2 млн. руб. Кроме того, нужно отметить, что волоконный лазер можно заказать уже со встроенным мультиплексором, имеющим несколько выходов.

Пожалуй, единственный недостаток заключается – это, что мультиплексор немного ухудшает качество излучения (т. е. на выходе доводится использовать волокно гораздо большего сечения), однако это критично лишь при лазерной резке. Волоконный лазер,его подобная система является наиболее оптимальной и целесообразной. На мультиплексор дополнительные капитальные затраты многократно компенсируются благодаря уровню загрузки лазера.

Итак: 1 – лазер, 2 – оптический коммутатор, 3 – головки (технологические), 4 – технологические посты, 5 – центральная система управления.

Еще один важный вопрос, связанный с универсальностью самих лазерных головок: Если планируется использование промышленного робота или многопостового участка, то лазерная головка обязательно должна обладать свойством универсальности (то есть, уметь выполнять различные технологические процессы). На сегодняшний день западные производители подобных головок не выпускают!

Однако такая техника уже существует: в скором времени начнется серийное производство – универсальной перестраиваемой головки, которая может выполнять весь базовый спектр технологических операций с применением излучения волоконных лазеров (сварка, резка, закалка, перфорация). Адаптация головки к какой-либо конкретной операции осуществляется и за счет автоматического преобразования оптической системы, и за счет сменной технологической насадки (т. е. ее замены), которая крепится по принципу известного магнитного подвеса.

Волоконный лазер, его преимущества:

Оценки показывают: волоконный лазер располагает значительным экономическим потенциалом.

  • Высокая рентабельность волоконный лазер, проектов основанных на современных лазерах – обеспечивается исключительно при максимальной загрузке оборудования, то есть за счет достаточно существенной надежности и уникальности ресурса новых лазеров технически возможно.
  • Довольно-таки существенную перспективу могут иметь непосредственно многофункциональные технологические участки, обладающие разделением ресурса источника лазера.
  • Несмотря на значительные капиталовложения, окупаемость лазерного оборудования и лазерных технологических систем в целом – может быть весьма и весьма быстрой вплоть до 1-1,5 года.

Волоконный лазер – это лазер с полностью или частично оптоволоконной реализацией, где из оптического волокна выполнены усиливающая среда и, в отдельных случаях, резонатор.


Волоконный лазер – это лазер с полностью или частично оптоволоконной реализацией, где из оптического волокн а выполнены усиливающая среда и, в отдельных случаях, резонатор. В зависимости от степени волоконной реализации лазер может быть цельноволоконным (активная среда и резонатор) или волоконно-дискретным (волоконный только резонатор или другие элементы ).

Волоконные лазеры могут работать в непрерывной, а также в нано- и фемтосекундной импульсной пульсации.

Конструкция лазера зависит от специфики их работы. Резонатором может быть система Фабри-Перо или резонатор кольцевой. В большинстве конструкций в качестве активной среды используется оптоволокно, допированное ионами редкоземельных элементов – тулий, эрбий, неодим, иттербий, празеодимий. Накачка лазера осуществляется с помощью одного или нескольких лазерных диодов непосредственно в сердцевину волокна или, в мощных системах, во внутреннюю оболочку.

Волоконные лазеры получили широкое применение благодаря широкому выбору параметров, возможности настройки импульса в широком диапазоне длительности, частот и мощностей.

Мощность волоконных лазеров – от 1 Вт до 30 кВт. Длина оптического волокна – до 20 м.


Применение волоконных лазеров:

резка металлов и полимеров в промышленном производстве,

прецизионная резка,

микрообработка металлов и полимеров,

обработка поверхностей,

пайка,

термообработка,

маркировка продукции,

телекоммуникация (оптоволоконные линии связи),

производство электроники,

производство медицинских приборов,

научное приборостроение.

Преимущества волоконных лазеров:

– волоконные лазеры являются уникальным инструментом, открывающим новую эру в обработке материалов,

портативность и возможность выбора длины волны волоконных лазеров позволяют реализовать новые эффективные применения недоступные для других типов ныне существующих лазеров,

– превосходят другие типы лазеров практически по всем существенным параметрам, важным с точки зрения их промышленного использования,

возможности настройки импульса в широком диапазоне длительности, частот и мощностей,

– возможность задания последовательности коротких импульсов с требуемой частотой и высокой пиковой мощностью , что необходимо, к примеру, для лазерной гравировки,

широкий выбор параметров.

Сравнение лазеров различных типов:

Параметр Требуется для использования в промышленности СО 2 YAG-Nd с ламповой накачкой YAG-Nd с диодной накачкой Диодные лазеры
Выходная мощность, кВт 1…30 1…30 1…5 1…4 1…4 1…30
Длина волны, мкм как можно меньше 10,6 1,064 1,064 или 1,03 0,8…0,98 1,07
BPP, мм х мрад < 10 3…6 22 22 > 200 1,3…14
КПД, % > 20 8…10 2…3 4…6 25…30 20…25
Дальность доставки излучения волокном 10…300 отсутствует 20…40 20…40 10…50 10..300
Стабильность выходной мощности как можно выше низкая низкая низкая высокая очень высокая
Чувствительность к обратному отражению как можно ниже высокая высокая высокая низкая низкая
Занимаемая площадь, кв.м как можно меньше 10…20 11 9 4 0,5
Стоимость монтажа, отн.ед. как можно меньше 1 1 0,8 0,2 < 0,05
Стоимость эксплуатации, отн.ед. как можно меньше 0,5 1 0,6 0,2 0,13
Стоимость обслуживания, отн.ед. как можно меньше 1…1,5 1 4…12 4…10 0,1
Периодичность замены ламп или лазерных диодов, час. как можно больше 300…500 2000…5000 2000…5000 > 50 000


2000w cw оптико raycus импульсный волоконный иттербиевый лазер 50 вт 100 квт купить производитель
волоконные твердотельные лазеры
резка металлов фанеры обалденная cernark гравировка режимы глубокой гравировки волоконным лазером
устройство иттербиевого волоконного лазера
волоконная машина продаю лазер
принцип работы производство фрязино 1.65 мкм технология иттербиевый купить цена ipg лс 1 оптический для резки металла гравировка импульсный принцип работы станок оптико применения мощность своими руками устройство схема длина волны сварка производитель режет волнами

Коэффициент востребованности 902

Изучение проблемы лазерной резки металлов необходимо начать с рассмотрения физических основ работы лазера. Поскольку далее в работе все исследования точности лазерной резки тонколистовых материалов будут проводиться на лазерном комплексе, использующем иттербиевый волоконный лазер, рассмотрим устройство волоконных лазеров.

Лазер – устройство, преобразующее энергию накачки (световую, электрическую, тепловую, химическую и др.) в энергию когерентного, монохроматического, поляризованного и узконаправленного потока излучения.

Волоконные лазеры были разработаны сравнительно недавно, в 1980-х годах. В настоящее время известны модели волоконных технологических лазеров мощностью до 20 кВт. Их спектральный состав находится в пределах от 1 до 2 мкм. Использование таких лазеров позволяет обеспечить различные временные характеристики излучения.

В последнее время волоконные лазеры активно вытесняют традиционные лазеры из таких областей применения лазерной техники, как, например, лазерная резка и сварка металлов, маркировка и обработка поверхностей, полиграфия и скоростная лазерная печать. Их используют в лазерных дальномера и трехмерных локаторах, аппаратуре для телекоммуникаций, в медицинских установках и т.д.

Основными типами волоконных лазеров являются непрерывные одномодовые лазеры, в том числе однополяризационные и одночастотные; импульсные волоконные лазеры, работающие в режиме модуляции добротности, синхронизации мод, а также в произвольном режиме модуляции; перенастраиваемые волоконные лазеры; сверхлюминисцентные волоконные лазеры; мощные непрерывные многомодовые волоконные лазеры.

Принцип работы лазера основан на пропускании света фотодиода по волокну большой протяженности. Волоконный лазер состоит из модуля накачки (как правило, широкополосные светодиоды или лазерные диоды), световода, в котором происходит генерация, и резонатора. Световод содержит активное вещество (легированнное оптическое волокно - сердцевина без оболочки, в отличие от обычных оптических волноводов) и волноводы накачки. Конструкция резонатора обычно определяется техническим заданием, но можно выделить наиболее распространенные классы: резонаторы типа Фабри - Перо и кольцевые резонаторы. В промышленных установках для повышения выходной мощности иногда объединяют несколько лазеров в одной установке. На рис. 1.2 показана упрощенная схема устройства волоконного лазера.

Рис. 1.2. Типичная схема волоконного лазера.

1 - активное волокно; 2 - брэгговские зеркала; 3 - блок накачки.

Основной материал для активного оптического волокна – кварц. Высокая прозрачность кварца обеспечивается насыщенными состояниями энергетических уровней атомов. Примеси, вносимые легированием, превращают кварц в поглощающую среду. Подобрав мощность излучения накачки, в такой среде можно создать инверсное состояние заселённостей энергетических уровней (то есть, высокоэнергетические уровни будут заполнены больше, чем основной). Исходя из требований на резонансную частоту (инфракрасный диапазон для телекоммуникаций) и малую пороговую мощность накачки, как правило, легирование выполняют редкоземельными элементами группы лантаноидов. Одним из распространённых типов волокон являетсяэрбиевое, используемое в лазерных и усилительных системах, рабочий диапазон которых лежит в интервале длин волн 1530-1565 нм. Вследствие различной вероятности переходов на основной уровень с подуровней метастабильного уровня, эффективность генерации или усиления отличается для различных длин волн в рабочем диапазоне. Степень легирования редкоземельными ионами обычно зависит от длины изготовляемого активного волокна. В пределах до нескольких десятков метров она может составлять от десятков до тысяч ppm, а в случае километровых длин - 1 ppm и менее.

Брэгговские зеркала – распределённый брэгговский отражатель - это слоистая структура, в которой коэффициент преломленияматериала периодически изменяется в одном пространственном направлении (перпендикулярно слоям).

Существуют различные конструкции накачки оптических волноводов, из которых наиболее употребительными являются чисто волоконные конструкции. Одним из вариантов является размещение активного волокна внутри нескольких оболочек, из которых внешняя является защитной (так называемое волокно с двойным покрытием). Первая оболочка изготовляется из чистого кварца диаметром в несколько сотен микрометров, а вторая - из полимерного материала, показатель преломления которого подбирается существенно меньшим, чем у кварца. Таким образом, первая и вторая оболочки создают многомодовый волновод с большим поперечным сечением и числовой апертурой, в который запускается излучение накачки. На рис. 1.3 показана схема накачки лазера, основанного на волокне с двойным покрытием.

Рис. 1.3. Схема накачки лазера, основанного на волокне с двойным покрытием.

К преимуществам волоконных лазеров традиционно относят значительное отношение площади резонатора к его объёму, что обеспечивает качественное охлаждение, термостойкость кремния и небольшие размеры приборов в подобных классах требований по мощности и качеству. Лазерный луч, как правило, необходимо завести в оптическое волокно для последующего использования в технике. Для лазеров иной конструкции это требует специальных оптических систем коллимации и делает устройства чувствительными к вибрациям. В волоконных лазерах генерация излучения происходит непосредственно в волокне, и оно имеет высокое оптическое качество. Недостатками данного типа лазеров являются опасность возникновения нелинейных эффектов из-за высокой плотности излучения в волокне и сравнительно небольшая выходная энергия в импульсе, обусловленная малым объёмом активного вещества.

Волоконные лазеры проигрывают твердотельным в сферах применения, где требуется высокая стабильность поляризации, а использование сохраняющего поляризацию волокна затруднено по различным причинам. Твердотельные лазеры не могут быть заменены волоконными в спектральном диапазоне 0,7-1,0 мкм. Они также имеют больший потенциал для наращивания выходной мощности импульса по сравнению с волоконными. Однако волоконные лазеры показывают хорошие результаты на длинах волн, где не существует достаточно хороших активных сред или зеркал для лазеров иных конструкций, и позволяют с меньшими сложностями реализовывать некоторые лазерные схемы наподобие up-конверсии.

В основе подобных станков лежит оптоволоконный лазер. Он отличается очень высоким качеством излучения при малых габаритах устройства. Кроме того, оборудование легко охлаждается и не требует трудоемкого обслуживания. Оптоволоконные лазерные граверы получили широкое распространение в таких сферах, как:

  • производство сувенирной продукции;
  • автомобилестроение, изготовление медицинского оборудования и другие отрасли, где необходима качественная коррозионно-стойкая маркировка деталей;
  • производство ювелирных изделий и бижутерии;
  • изготовление памятников и ритуальной продукции;
  • декорирование мебели и элементов интерьера.

Волоконные лазерные граверы отличаются несколько более высокой ценой в сравнении с СО 2 -станками. Но это обстоятельство компенсируется рядом преимуществ, которыми обладает подобное оборудование:

  • более высокий КПД, благодаря чему лазер отличается низким расходом электроэнергии при хорошей мощности;
  • работа волоконных лазерных граверов основана на применении диодов, которые характеризуются компактностью, надежностью и долговечностью;
  • сверхмалый размер луча, способствующий более высокому разрешению при гравировке и позволяющий создавать микроскопические изображения с отличной детализацией.

Как выбрать оптоволоконный лазерный гравер

При покупке оборудования необходимо уделить внимание следующим характеристикам:

  • мощность. Она должна соответствовать типу обрабатываемого материала, а также требуемой производительности станка;
  • размеры гравировального поля. Они определяют максимальные габариты заготовки, которую сможет обработать станок;
  • функциональность и наличие дополнительных опций.