Как называется механизм в часах. Спусковой механизм часов


Первые механические часы.

Первые упоминания о механических часах относятся к концу VI века. Скорее всего, это были водяные часы, в которые было встроено механическое устройство для приведения в действие дополнительных функций, например механизма боя.

Настоящие механические часы появились в XIII веке в Европе. Они еще не были достаточно надежными, поэтому приходилось постоянно проверять время по солнечным часам. Их часовой механизм работал, используя энергию опускающегося груза, в качестве которого долгое время применялись каменные гири. Чтобы запустить такие часы, приходилось поднимать очень тяжелую гирю на значительную высоту.

Стоит отметить, что механические часы, созданные в XIII-XIV веках, были очень большими и использовались крайне редко. Их устанавливали лишь в монастырях, чтобы монахи вовремя могли собираться на службу. Именно монахи и решили нанести на круг 12 делений, каждое из которых соответствовало одному часу. Только в XVI веке часы появились на городских зданиях.

В XIV-XV веках были созданы первые напольные и настенные часы. Поначалу они были довольно тяжелыми, так как приводились в действие с помощью груза, который надо было подтягивать каждые 12 часов. Такие часы изготавливали из железа, а чуть позже из латуни, и по конструкции они повторяли башенные часы.

Во второй половине XV века были созданы первые часы с пружинным двигателем. Источником энергии в таких часах была стальная пружина, которая во время раскручивания поворачивала колеса часового механизма. Первые настольные пружинные часы были изготовлены неизвестным мастером из бронзы. Высота этих часов составляла полметра.

Первые переносные пружинные часы были сделаны из латуни и имели форму круглой или квадратной коробки. Циферблат таких часов был горизонтальным. На нем по кругу размещались выпуклые шарики из латуни, что помогало определять время на ощупь в темное время суток. Стрелка была выполнена в форме дракона или другого мифического существа.

Наука продолжала развиваться, а вместе с ней усовершенствовались механические часы. В XVI веке появились первые карманные часы. Такие приборы были большой редкостью, поэтому позволить себе их приобретение могли только богатые люди. Очень часто карманные часы украшали драгоценными камнями. Но и тогда время продолжали сверять по солнечным часам. Некоторые часы даже имели два циферблата: с одной стороны механический, а с другой солнечный.

В 1657 году Христиан Гюйгенс собрал механические маятниковые часы. Они отличались необыкновенной точностью по сравнению со всеми существующими на тот момент приборами для отсчета времени. Если до появления маятника точными считались часы, отстающие или спешащие на 30 минут в сутки, то теперь погрешность составляла не более 3 минут в неделю. В 1674 году Гюйгенс усовершенствовал регулятор пружинных часов. Его изобретение потребовало создания качественно нового спускового механизма. Немного позже этот механизм был придуман. Им стал анкер.

Изобретения Гюйгенса получили широкое распространение во многих странах. Часовое мастерство начало активно развиваться. Постепенно снижалась погрешность хода часов, к тому же заводить механизмы можно было уже раз в восемь дней.

В связи с повышением точности часов в 1680 году были созданы первые механизмы с минутной стрелкой. В то же время на циферблатной пластине появился второй ряд цифр для обозначения минут, в котором использовались арабские цифры. А в середине XVIII века появились часы с секундной стрелкой.

В это время во всех видах искусства господствовал стиль рококо. В часовом деле его влияние выразилось в разнообразии форм часов и используемых материалов, обилии резных узоров, завитков, внешних украшений из золота и драгоценных камней. В то же время вошли в моду каретные часы. Считается, что дорожные, или каретные часы появились благодаря французскому механику и часовщику Абрагаму-Луи Бреге.

Чаще всего они были прямоугольной формы со стеклянными боковыми стенками. Сверху к корпусу крепилась латунная ручка, которая служила для переноски часов. Все латунные поверхности часов имели покрытие из золота. Стоит заметить, что внешний вид дорожных часов практически не менялся в течение всего столетия.

Благодаря усовершенствованиям часового механизма во второй половине XVIII века часы стали более плоскими и уменьшились в размерах. Но, несмотря на изменения внешнего облика часов, они все еще продолжали оставаться прерогативой избранных. Только во второй половине XIX века их стали производить в больших количествах в Германии, Англии, США, а также Швейцарии.

Механические часы развивались не менее пяти веков. Сегодня их условно подразделяют не только по типу часового механизма (маятниковые, балансовые, камертонные, кварцевые, квантовые), но и по назначению (бытовые и специальные).

К бытовым часам можно отнести башенные, настенные, настольные, наручные и карманные часы. Специализированные часы подразделяют в зависимости от назначения. Среди них можно встретить часы для подводного плавания, сигнальные, шахматные, антимагнитные часы, а также многие другие. Прототипом современных механических часов являются созданные в 1657 году маятниковые часы Х. Гюйгенса.



План:

    Введение
  • 1 История
    • 1.1 Жидкостный спусковой механизм
    • 1.2 Механический спусковой механизм
  • 2 Надежность
  • 3 Точность
  • 4 Механические спусковые механизмы
    • 4.1 Штыревой спусковой механизм
    • 4.2 Анкерный спусковой механизм
    • 4.3 Беcтиковый спусковой механизм
    • 4.4 Рычажный спусковой механизм
    • 4.5 Дуплексный (двухсторонний) спусковой механизм
    • 4.6 Кузнечиковый спусковой механизм
    • 4.7 Гравитационный спусковой механизм
  • 5 Электромеханические спусковые механизмы
    • 5.1 Часы Хиппа
    • 5.2 Часы со свободным маятником
  • Примечания

Введение

Простейший спусковой механизм часов. Гиря или пружина вращает шестерню, и она с помощью механизма спуска толкает маятник то в одну, то в другую сторону.

Спусковой механизм часов (на языке часовщиков: спуск , ход ) (фр. échappement , англ. escapement , нем. hemmung ) - в механических часах: устройство, которое преобразует непрерывное вращательное движение в колебательное или возвратно-поступательное движение. Это устройство обеспечивает равномерное расходование энергии, запасённой в пружине или гире.

Спусковой механизм двигает колебательный элемент часов, обычно это маятник или балансирное колесо. Сам он получает энергию от зубчатой шестерни, которая вращается спиральной пружиной или гирей. Без спускового механизма система просто неуправляемо раскрутится, спусковой же механизм регулирует это движение, управляя периодическими колебаниями маятника или балансирного колеса. Это позволяет шестерне совершать равномерные вращательные движения с каждым колебанием маятника, двигая механизм отсчёта времени часов с постоянной скоростью. Вторая функция спускового механизма заключается в том, чтобы поддерживать колебания маятника или балансирного колеса, передавая им небольшие толчки.

Каждое колебание маятника освобождает спусковой механизм, переводя его из состояния "блокирован" в состояние "движение" в течение короткого периода, который заканчивается, как только следующий зуб шестерни упирается в блокирующую поверхность спускового механизма. Именно это периодическое освобождения энергии и быстрой остановки заставляет часы «тикать». Этот звук издаёт зубчатая передача, когда шестерня вдруг останавливается в момент очередного блокирования спускового механизма.


1. История

Важность спускового механизма в истории техники заключается в том, что он является ключевым изобретением, давшим возможность создать все типы механических часов. Благодаря этому изобретению в Европе в XIII веке произошёл поворот в разработке часовых механизмов от применения непрерывных процессов (таких, как, например, поток воды в водяных часах) к периодически повторяющимся процессам, таким как колебания маятника, которые могли обеспечить более высокую точность.

1.1. Жидкостный спусковой механизм

Первые жидкостные спусковые механизмы сделал в Китае буддийский монах И Син, который вместе с государственным деятелем Лян Линцзанем применил их в 723 г. (или 725 г.) в армиллярной сфере и часах. В эпоху империи Сун (960-1279 гг.) инженеры Чжан Сисунь (ум. в конце X века) и Су Сун (1020 - 1101 гг.) усовершенствовали спусковые механизмы в своих астрономическими башенных часах, прежде чем технология в Китае пришла в застой и упадок. По словам Ахмада аль Хассана, ртутный спусковой механизм в Испании, сделанный для короля Кастилии Альфонса X в 1277, можно отнести к самым ранним, описанным в арабских источниках. Сведения об этих ртутных спусковых механизмах, возможно, распространились по Европе после переводов арабского и испанского текстов.

Однако, ни один из таких спусковых механизмов не обладал достаточной точностью, поскольку их работа по измерению времени зависела от равномерности потока жидкости через отверстие. Например, в часах Су Сонга вода перетекала в ёмкость, установленную на штыре. Роль спускового механизма заключалась в том, чтобы наклонить чашу ёмкости каждый раз, когда она наполнится, при этом колесо часового механизма повернётся на определённый угол, вода из чаши выльется, и затем процесс повторяется снова.


1.2. Механический спусковой механизм

Первые механические спусковые механизмы - штыревые, в течение нескольких веков использовались в устройствах управления колокольным звоном, прежде чем их стали применять в часах. В XIV веке такие механизмы устанавливали в первых механических часах в Европе, это были большие башенные часы. Сейчас уже трудно установить, когда они впервые были использованы, потому что сложно отличить, какие из башенных часов этого периода были механические, а какие - водяные. Однако, косвенные свидетельства, такие, как резкое увеличение стоимости строительства часов, указывают на конец XIII века как на наиболее вероятную дату появления современных спусковых механизмов. Астроном Роберт Англикус писал в 1271, что часовые мастера пытаются изобрести спусковой механизм, но это пока не удалось. Тем не менее, большинство источников согласны с тем, что механические часы со спусковым механизмом в 1300 г. уже существовали.


2. Надежность

Надежность спускового механизма зависит от квалификации изготовителя и уровня обслуживания. Плохо сделанные или плохо обслуживаемые устройства будут иметь проблемы. Спусковой механизм должен точно переводить колебания маятника или балансирного колеса во вращение шестерен часового механизма, и он должен передавать достаточно энергии маятнику или балансирному колесу для поддержания его колебаний.

Во многих спусковых механизмах разблокирование создаёт скользящее движение. Например, в показанной выше анимации, лопатки анкера скользят по зубу спусковой шестерни при колебаниях маятника. Лопатки часто делают из очень твёрдых материалов, таких, как например, искусственный рубин, но даже в этом случае они требуют смазки. Поскольку смазочное масло со временем улетучивается из-за испарения, окисления и т.д., то периодически требуется повторная смазка. Если этого не делать, то часы могут работать нестабильно или вообще остановиться, а детали спускового механизма подвергнутся быстрому износу. Повышенная надежность современных часов в основном объясняется более высоким качеством смазки. В высококачественных часах смазки хватает на пять лет и более.

В некоторых спусковых механизмах вообще удалось избежать трения скольжения, например, в кузнечиковом механизме Джона Харрисона XVIII века, или в коаксиальном механизме Джорджа Дэниэлса XX века. В них нет необходимости смазывать спусковой механизм (но это не отменяет требования по смазке других частей передаточного механизма).


3. Точность

Точность механических часов зависит от точности таймерного устройства. Если это маятник, то точность определяет период колебаний маятника. Если стержень маятника изготовлен из металла, он будет расширяться от контакта с теплом, при этом период колебаний будет меняться. В дорогих часах для изготовления маятника используются специальные сплавы, чтобы минимизировать эти отклонения. Период колебаний маятника варьируется также в зависимости от размаха колебаний. В высокоточных часах дугу колебаний делают как можно меньше. Маятниковые часы могут достичь очень высокой точности. Даже в XX веке маятниковые часы использовались в лабораторных измерениях. Спусковой механизм оказывает большое влияние на точность. Чем точнее маятник получает импульс энергии, тем точнее период его колебаний. В идеале импульс должен быть равномерно распределён по обе стороны от нижней точки колебаний маятника. Это объясняется тем, что подталкивание маятника при его движении к нижней точке колебания даёт прирост его энергии, а подталкивание при отходе от этой точки приводит к потере энергии. Если импульс равномерно распределён, то он отдаёт энергию маятнику без влияния на период его колебаний.

Наручные и другие маленькие часы не используют маятник в качестве таймера. Вместо него они используют балансирную пружину - тонкий металлический волосок, соединённый с балансирным колесом. Балансирное колесо вращается взад-вперёд, в хороших швейцарских часах - с частотой 4 Гц (или 8 тиков в секунду). В некоторых часах используются более высокая скорость. Длина волоска не должна зависеть от температуры, для его изготовления используются специальные сложные сплавы. Как и в случае с маятником, спусковой механизм должен делать небольшой толчок в каждом цикле, чтобы поддерживать колебания балансира. Актуальна та же проблема смазки. Если спусковой механизм вовремя не смазать, часы начнут терять точность (как правило, происходит ускорение).

Карманные часы являются предшественниками современных наручных часов. Их носили в кармане, поэтому они, как правило, были в вертикальной ориентации. Гравитация вызывает некоторую потерю точности, поскольку с течением времени происходит отклонение от симметрии в механизме. Чтобы свести к минимуму это влияние, французский часовщик Бреге изобрёл в 1795 году особый тип спускового механизма - «турбийон». В нём балансир помещается в специальную вращающуюся рамку (период вращения, как правило, один оборот в минуту), что и позволяет сглаживать гравитационные искажения.

Самые точные механические часы изготовил английский археолог Эдвард Холл. По его данным точность хода часов составила около 0,02 секунд за 100 дней. Эти часы электромеханические, в них в качестве таймера используется маятник, а энергия ему передаётся с помощью специальных реле и электромагнитов.


4. Механические спусковые механизмы

Начиная с 1658, когда появились маятник и пружинный балансир, было разработано более 300 видов различных механических спусковых механизмов, но только около 10 из них получили широкое распространение. Почти все они описаны ниже. В XX веке электронные методы измерения времени постепенно вытеснили механические часы, так что изучение конструкции спусковых механизмов стало небольшим курьёзом.

4.1. Штыревой спусковой механизм

На штыревом спусковом механизме показаны: (c) - колесо с коронкой, (v) - штырь, (p, q) - лопатки.

Самый первый спусковой механизм, появившийся в Европе примерно в 1275 г., был штыревой, который называли также корончато-штыревым механизмом. Он появился ещё до маятника и первоначально управлялся фолиотом, горизонтальной планкой с грузом на каждом конце. Вертикальный стержень (штырь), крепится к средней части фолиота и имеет две небольшие пластинки (лопатки), торчащие подобно флаг на древке. Одна лопатка крепится сверху, а другая снизу штыря, и они повёрнуты на чуть более девяноста градусов друг относительно друга. Спусковая шестерня делается в виде короны и вращается относительно вертикальной оси. Когда шестерня начинает вращаться, её зуб толкает верхнюю лопатку, и фолиот начинает двигаться. Когда зуб выталкивает верхнюю лопатку, нижняя поворачивается и входит в зацепление. Импульс движения фолиота толкает шестерню назад, и в конечном счете система останавливается. В этот момент нижняя лопатка подталкивает фолиот, и процесс повторяется. Эта система не имеет собственной частоты колебаний, просто некая сила всё время подталкивает шестерню и она по инерции поворачивается вокруг своей оси.

На следующем этапе развития та же идея была воплощена в сочетании с маятником. Ось штыря стала горизонтальной, половина фолиота исчезла, а зубчатое колесо поворачивается вокруг вертикальной оси. Такой же спусковой механизм, но гораздо меньшего размера, использовался в часах с балансиром и пружинкой вместо маятника. Первый морской хронометр Джона Гаррисона использовал сильно изменённый штыревой механизм, который, как оказалось, может быть хорошим таймером.


4.2. Анкерный спусковой механизм

Анкерный спусковой механизм.

Изобретённый около 1660 года Робертом Гуком, анкер быстро заменил штырь и стал стандартом для использования в маятниковых часах вплоть до конца XIX века. Его преимущество состоит в том, что он сократил амплитуду колебаний маятника до 3° - 6 °, в результате чего маятник стал изохронным. Он позволил использовать более длинные, медленнее движущиеся маятники, которые требуют меньше энергии. Благодаря ему появились длинные узкие напольные и настенные маятниковые часы (в некоторых странах их называют «дедовскими»), которые можно встретить ещё и в наше время.

Анкерный механизм состоит из спусковой шестерни с обратным наклоном зубьев и якореобразного "анкера", поворачивающегося над нею из стороны в сторону и соединённого с маятником. Анкер имеет на концах изогнутые лопатки, которые поочерёдно входят в зубья шестерни, получая импульсы. Механически его работа имеет сходство со штыревым механизмом, и он перенял от штыревого механизма два недостатка: (1) маятник постоянно подталкивается зубьями шестерни в каждом цикле, он не может совершать свободные колебания, тем самым нарушается его изохронность; (2) этот спусковой механизм имеет отдачи, анкер в своём цикле толкает шестерню в обратную сторону. Это вызывает мёртвый ход, повышающий износ часового механизма, и снижает точность. Эти недостатки были устранены в беcтиковом спусковом механизме, который постепенно заменил анкерный в точных часах.


4.3. Беcтиковый спусковой механизм

Беcтиковый спусковой механизм. Показано: (a) - спусковая шестерня (b) - лопатки, показаны концентрические блокирующие поверхности (c) - стойка маятника.

Беcтиковый спусковой механизм является улучшением анкерного. Впервые его сделал Томас Томпион по проекту Ричарда Таунлея в 1675 году, хотя часто ссылаются на преемника Томпиона, Джорджа Грэма, который популяризовал его в 1715 г. В анкерном спусковом механизме колебания маятника в части своего цикла толкают спусковую шестерню в обратную сторону. Этот «откат» мешает движению маятника, в результате снижается точность, а реверсы движения шестерни вызывают эффект «мёртвого хода» и создают высокие нагрузки на систему, что приводит к повышенному трению и износу. Основное преимущество бестикового механизма в том, что в нём эти отдачи устранены.

В бестиковом механизме лопатки имеют вторую криволинейную «блокирующую» поверхность, концентрическую относительно оси вращения анкера. При экстремумах колебаний маятника зуб спускового колеса становится неподвижным на этой поверхности, не передавая маятнику импульса, который вызывает откат. Вблизи нижнего положения маятника зуб выходит из зацепления с блокирующей поверхностью и входит в зацепление с остроугольной «импульсной» поверхностью, давая толчок маятнику до того, как лопатка освободит зуб. Это был первый механизм с раздельными блокирующей и импульсной поверхностями. Бестиковый механизм впервые был использован в часах с точной регулировкой хода. Ввиду более высокой точности он заменил анкерный механизм. Бестиковый механизм используется практически во всех современных маятниковых часах.


4.4. Рычажный спусковой механизм

Рычажный спусковой механизм использовался в подавляющем большинстве часов после 1800 г. Он является точным и достаточно простым в изготовлении. Он также является самозапускающимся, поэтому если часы встряхнуть, так чтобы балансир остановился, он автоматически начнёт работать снова. Есть несколько типов рычажных спусковых механизмов. Оригинальний тип был штативный, в котором рычаг и колесо балансира всегда соединялись с помощью шестерни. Позже стало ясно, что все зубья из шестерни можно удалить, за исключением одного. Так появился разъединённый рычажный спусковой механизм. Его не только легче и проще сделать, но он также значительно более точный. Рычаг может быть поставлен так, чтобы он был под прямым углом к спусковой шестерне, такой вариант предпочитают британские часовщики. Или же, рычаг может быть поставлен внутри балансира и внутри спусковой шестерни, такому варианту отдают предпочтение швейцарские и американские часовщики. Наконец, в «однодолларовых» часах используется весьма примитивный тип рычажного спускового механизма под названием «лопаточно-штыревой».

Внутренний или швейцарский рычажный спусковой механизм.


4.5. Дуплексный (двухсторонний) спусковой механизм

Дуплексный спусковой механизм был изобретен Робертом Гуком около 1700 г., улучшен, Жаном Батистом Дютертре и Пьером Ле Руа, и окончательно отработан Томасом Трайером, который запатентовал его в 1782 г. Он использовался в качественных английских карманных часах с 1790 до 1860 гг., и в Уотербери, в дешёвых американских часах "ширпотреба", в течение 1880-1898 гг. В дуплексном механизме, как и в хронометре, с которым он имеет сходство, балансир получает импульс только в одном из двух колебаний цикла. Спусковая шестерня имеет два комплекта зубьев (отсюда название "дуплексный"). Длинный стопорный зуб сделан со стороны балансира, а короткий импульсный (подталкивающий) зуб выступает аксиально сверху. Цикл начинается, когда стопорный зуб находится напротив рубинового диска. Балансир начинает движение против часовой стрелки через центральное положение, бороздка рубинового диска освобождает зуб. Когда балансир начинает обратное движение, лопатка в крайнем правом положении получает толчок от импульсного зуба. В это время блокирующий зуб попадает на ролик рубинового диска и остается там, пока балансир не завершит цикл колебания по часовой стрелке, затем процесс повторяется. Во время движения по часовой стрелке импульсный зуб быстро опускается в бороздку рубинового диска и остаётся там.

Дуплексный механизм относится к механизмам с трением покоя, балансир никогда не бывает абсолютно свободен от спускового механизма. Как и в хронометре, небольшое трение скольжения имеется во время импульса, потому что импульсный зуб и лопатка движутся почти параллельно, поэтому необходима небольшая смазка. Дуплексный механизм обеспечивает точность по крайней мере не хуже рычажного и, возможно, приближается к хронометру. Однако чувствительность дуплексного механизма к встряхиваниям сделали его непригодным для активных людей. Как и хронометр, он не является самозапускающимся, в случае внезапной остановки во время движения балансира по часовой стрелке, он не может запуститься снова.

Дуплексный спусковой механизм, показано: (A) - спусковая шестерня, (B) - стопорный зуб, (C) - импульсный зуб, (D) - лопатка, (E) - рубиновый диск. Лопатка и диск крепятся к оси балансира, который на рисунке не показан.


4.6. Кузнечиковый спусковой механизм

Редким, но интересным спусковым механизмом является кузнечиковый механизм Джона Гаррисона. В нём маятник приводится в движение двумя шарнирными рычажками (лопатками). При колебаниях маятника один рычажок зацепляет шестерню и двигает её немного назад. Это освобождает другой рычажок, который движется назад, освобождая шестерню. Когда маятник движется в обратную сторону, второй рычажок зацепляет шестерню, толкает её и освобождает первый рычажок, и так далее. Кузнечиковый механизм гораздо сложнее в производстве, чем другие спусковые механизмы, поэтому он большая редкость. Кузнечиковый механизм, сделанный Гаррисоном в XVIII веке, всё ещё работает. Большинство механизмов изнашиваются гораздо быстрее и расходуют гораздо больше энергии.


4.7. Гравитационный спусковой механизм

Гравитационный спусковой механизм использует небольшой груз или маленькую пружинку для передачи импульса непосредственно на маятник. Первая конструкция состояла из двух плечей рычажка, который поворачивался очень близко к точке подвеса маятника, плечи располагались с разных сторон маятника. На каждом плече закреплена наклонённая лопатка. Когда маятник поднимает одно плечо достаточно высоко, его лопатка высвобождает спусковую шестерню. Почти сразу же другой зуб спусковой шестерни начинает скользить вверх по поверхности другого плеча, тем самым поднимая его. Он поднимает лопатку и останавливается. Тем временем первый зуб всё ещё находится в контакте с маятником и опускается ниже точки, с которой началось соприкосновение. Это снижение даёт импульс маятнику. Конструкция разрабатывалась постепенно с середины XVIII до середины XIX века. В конечном итоге этот механизм выбрали для башненных часов. В последнее время он усовершенствован и превратился в особый инерционно-гравитационный спусковой механизм, изобретённый Джеймсом Арнфельдом.


5. Электромеханические спусковые механизмы

В конце XIX века были разработаны электромеханические спусковые механизмы для маятниковых часов. В них реле или фотореле переключает электромагнит в такт с колебаниями маятника. Электромеханические спусковые механизмы являются одними из лучших. В некоторых часах электрические импульсы, которые приводят в движение маятник, управляют также перемещением плунжера, вращающего зубчатую шестерню.

5.1. Часы Хиппа

В середине 19-го века Маттиас Хипп изобрёл электромагнитный переключатель импульсов для часов. Маятник движет шестерню с храповиком через собачку, а эта шестерня движет остальной часовой механизм отсчёта времени. Маятник получает импульс не на каждом колебании и даже не на каждом втором колебании. Он получает импульс только тогда, когда амплитуда колебаний становится ниже определенного уровня. Как и собачка индикаторного механизма, маятник также снабжён небольшим флюгером; когда он поворачивается вверх, маятник совершает полностью свободные колебания. Когда амплитуда колебаний маятника достаточно большая, флюгер попадает в канавку, и маятник его не касается. Если амплитуда колебаний уменьшается, флюгер выходит из канавки, маятник его зацепляет и толкает вниз. Происходит замыкание цепи электромагнита, который посылает импульс маятнику. Амплитуда колебаний маятника увеличивается, и процесс повторяется.


5.2. Часы со свободным маятником

В XX веке Уильям Гамильтон Шорт изобрёл часы со свободным маятником, запатентовав их в сентябре 1921 года. Они производятся компанией Synchronome, их точность достигает сотой доли секунды в сутки. В этой системе «главный» маятник, стержень которого выполнен из специального стального сплава с 36% никеля (инвар) и длина которого почти не зависит от температуры, совершает свободные от внешнего влияния колебания, по возможности в закрытой вакуумной камере, и не совершает никакой работы. Он имеет механический контакт со спусковым механизмом через каждые 30 секунд и лишь на доли секунды. Вторичный «ведомый» маятник вращает храповик, который переключает электромагнит через каждые тридцать секунд. Этот электромагнит освобождает гравитационный спусковой механизм главного маятника. Доли секунды спустя движение главного маятника отключает спусковой механизм. Гравитационный спусковой механизм дает крошечный импульс главному маятнику, который поддерживает колебания маятника.


Примечания

  1. Cipolla Carlo M. Clocks and Culture, 1300 to 1700 - books.google.com/books?id=YSf9MVxa2JEC&pg=PA31&dq=verge escapement technology&sig=6ZbQh-an59yCcesR1mjn1p8w-H4. - W.W. Norton & Co.. - P. 31. - ISBN 0393324435
  2. Needham, Joseph (1986). Science and Civilization in China: Volume 4, Physics and Physical Technology, Part 2, Mechanical Engineering . Taipei: Caves Books Ltd. Page 165.
  3. Ahmad Y Hassan, Transfer Of Islamic Technology To The West, Part II: Transmission Of Islamic Engineering - www.history-science-technology.com/Articles/articles 71.htm, History of Science and Technology in Islam .
  4. Headrick, Michael (2002). «Origin and Evolution of the Anchor Clock Escapement - www.geocities.com/mvhw/anchor.html». Control Systems magazine, 22 (2).
  5. Hall, E. T. The Littlemore Clock - www.iinet.com/~holmstro/hsn_article.php. NAWCC Chapter 161 - Horological Science - www.iinet.com/~holmstro/hsn_entry.html . National Association of Watch and Clock Collectors (1996).
  6. Britten Frederick J. Watch and Clockmaker"s Handbook, 9th Edition - books.google.com/books?id=5SYJAAAAIAAJ&pg=PA108. - E.F.& N. Spon. - P. 108.
  7. Smith, Alan (2000) The Towneley Clocks at Greenwich Observatory - www.mikeoates.org/mas/history/lectures/20001116.htm Проверено 2009-03-27
  8. , Хансен Йонни Анкер .

Первые механические часы с анкерным механизмом были изготовлены в Танском Китае в 725 году нашей эры мастерами И Сином и Лян Линцзанем . Из Китая секрет устройства, по-видимому, попал к арабам .

На данный момент старейшие башенные часы Европы находятся в Гродно , Белоруссия . Они находятся в рабочем состоянии уже на протяжении более 500 лет. .

Позже появились карманные часы, запатентованные в 1675 году Х. Гюйгенсом , а затем - много позже - и часы наручные. Вначале наручные часы были только женские, богато украшенные драгоценными камнями ювелирные изделия, отличающиеся низкой точностью хода. Ни один уважающий себя мужчина того времени не надел бы часы себе на руку. Но войны изменили порядок вещей и в 1880 году массовое производство наручных часов для армии начала фирма Girard-Perregaux.

Конструкция механических часов

Механические часы состоят из нескольких основных частей:

  1. Источник энергии - заведённая пружина или поднятая гиря.
  2. Спусковой механизм - устройство, которое преобразует непрерывное вращательное движение в колебательное или возвратно-поступательное движение. Спусковой механизм определяет точность хода часов.
  3. Колебательная система - маятник или балансир (баланс).
  4. Механизм подзаводки и перевода стрелок - ремонтуар.
  5. Система шестерёнок, соединяющая пружину и спусковой механизм - ангренаж.
  6. Циферблат со стрелками.

Маятник

Исторически первой колебательной системой был маятник. Как известно, при одинаковой амплитуде и постоянном ускорении свободного падения частота колебания маятника неизменна.

В состав маятникового механизма входят:

  • Маятник;
  • Анкер, соединённый с маятником;
  • Храповое колесо (храповик).

Точность хода настраивается изменением длины маятника.

У классического маятникового механизма есть три недостатка. Во-первых, частота колебаний маятника зависит от амплитуды колебаний (этот недостаток преодолел Гюйгенс , заставив маятник колебаться по циклоиде , а не по дуге окружности). [Галилей опубликовал исследование колебаний маятника и заявил, что период колебаний не зависит от их амплитуды (это приблизительно верно для малых амплитуд).] Во-вторых, маятниковые часы должны быть установлены неподвижно; на движущемся транспорте их применять нельзя. В-третьих, частота зависит от ускорения свободного падения, поэтому часы, выверенные на одной широте , будут отставать на более низких широтах и уходить вперёд на более высоких.

Баланс

Фазы Луны

Автоподзавод положительно сказывается на точности (пружина постоянно находится в почти заведённом состоянии). В водонепроницаемых часах медленнее изнашивается резьба, которая закручивает заводную головку.

Часы с автоподзаводом толще и тяжелее часов с ручным заводом. Женские калибры с автоподзаводом достаточно капризны, в силу миниатюрности их деталей. Автоподзавод бесполезен для малоподвижных людей (к примеру, находящихся в преклонном возрасте или в болезненном состоянии), а также для людей, которые носят часы лишь время от времени. Однако при наличии специального устройства для автоматического завода часов под названием «виндер», часы могут постоянно находиться в заведенном состоянии. Виндеры работают от бытовой электросети (220в или 110в) либо от аккумуляторных батарей.

Турбийон

В первых механических часах точность хода могла зависеть от положения часов в пространстве и температуры окружающей среды. Для уменьшения зависимости от температуры стали применяться специальные сплавы с низкими температурными коэффициентами.

Индикатор запаса хода

Показывает, на сколько ещё часов или дней хватает завода пружины.

Особые типы часов

Будильник

В указанный пользователем момент даёт звуковой сигнал. Время сигнала задаётся с помощью дополнительной стрелки. Будильник обычно звонит 2 раза в сутки с традиционным циферблатом, разделённым на 12 часов и 1 раз с циферблатом, разделённым на 24 часа

Контроля времени в шахматах . Так же, как секундомеры, предназначены для измерения относительного времени.