Алгоритм поиска неисправности в драйвере LED лампы или Эркюль Пуаро отдыхает. Драйверы для светодиодов: что это и для чего они нужны Маркировка драйвера для светодиодов автомобиля

Отправим материал вам на e-mail

В последние годы все большую популярность стало набирать . Это вызвано тем, что используемые в светильниках светодиоды, их еще называют светоизлучающими диодами (СИД), довольно яркие, экономичные и долговечные. При помощи светодиодных элементов создаются интересные и оригинальные световые эффекты, которые можно применять в самых различных интерьерах. Однако, такие осветительные приборы очень требовательны к параметрам электросетей, особенно к величине тока. Поэтому для нормальной работы освещения в цепь должны быть включены драйверы для светодиодов. В этой статье мы попробуем разобраться, что же такое светодиодные драйверы, каковы их основные характеристики, как не ошибиться при выборе и можно ли сделать его своими руками.

Без такого миниатюрного устройства светодиоды работать не будут

Поскольку светодиоды являются токовыми приборами, то соответственно они очень чувствительны к этому параметру. Для нормальной работы освещения требуется, чтобы через LED-элемент проходил стабилизированный ток с номинальной величиной. Для этих целей и был создан драйвер для светодиодных светильников.

Некоторые читатели, увидев слово драйвер, будут в недоумении, поскольку все мы привыкли, что этим термином обозначается некое ПО, позволяющее управлять программами и устройствами. В переводе с английского языка driver означает: водитель, машинист, поводок, мачта, управляющая программа и еще более 10 значений, но всех их объединяет одна функция – управление. Так обстоит дело и с драйверами для , только управляют они током. Итак, с термином разобрались, теперь перейдем к сути.


LED-драйвер – электронное устройство, на выходе которого, после стабилизации, образуется постоянный ток необходимой величины, обеспечивающий нормальную работу светодиодных элементов. В этом случае стабилизируется именно ток, а не напряжение. Устройства, стабилизирующие выходное напряжение называются блоками питания , которые также используются для питания светодиодных элементов освещения.

Как мы уже поняли, основным параметром драйвера для светодиодов является выходной ток, который устройство может обеспечивать длительное время при включении нагрузки. Для нормального и стабильного свечения LED-элементов требуется, чтобы через светодиод протекал ток, величина которого должна совпадать со значениями указанными в техническом паспорте полупроводника.

Где нашли применение драйвера для светодиодов

Как правило, светодиодные драйверы рассчитаны на работу с напряжением 10, 12, 24, 220 В и постоянным током в 350 мА, 700 мА и 1 А. Стабилизаторы тока для светодиодов производят, в основном, под определенные изделия, но существуют и универсальные устройства, подходящие к LED-элементам ведущих производителей.

В основном LED-драйвера в сетях с переменным током используются для:

В электроцепях с постоянным током стабилизаторы нужны для нормальной работы бортового освещения и фар автомобиля, переносных фонарей и т.д.


Токовые стабилизаторы адаптированы для работы с системами контроля и датчиками фотоэлементов , а в силу своей компактности могут быть легко установлены в распределительных коробках. Также посредством драйверов можно легко менять яркость и цвет светодиодных элементов, уменьшая величину тока посредством цифрового управления.

Как работают стабилизирующие устройства для светодиодов

Принцип работы преобразователя для и лент состоит в поддержании заданной величины тока независимо от выходного напряжения. В этом и заключается разница между блоком питания и драйвером для светодиодов.


Если посмотреть на представленную выше схему то мы увидим, что ток, благодаря резистору R1, стабилизируется, а конденсатор C1 задает необходимую частоту. Далее в работу включается диодный мост, в результате чего на светодиоды поступает стабилизированный ток.

Характеристики устройства, на которые нужно обратить внимание

Подбирая ЛЕД-драйвер для светодиодных светильников необходимо обязательно учитывать тот основных параметра, а именно: ток, выходное напряжение и мощность, потребляемая подключаемой нагрузкой.

Выходное напряжение токового стабилизатора зависит от следующих факторов:

  • количество LED-элементов;
  • падение напряжения на СИД;
  • способ подключения.

Ток на выходе устройства обусловлен мощностью и яркостью светодиодов . Мощность нагрузки оказывает влияние на потребляемый ею ток в зависимости от требуемой интенсивности свечения. Именно стабилизатор обеспечивает светодиодам ток необходимой величины.

Мощность светодиодного светильника зависит непосредственно от:

  • мощности каждого LED-элемента;
  • общего количества светодиодов;
  • цвета.

Потребляемую нагрузкой мощность можно рассчитать по следующей формуле:

PН = PLED × N , где

  • PН – общая мощность нагрузки;
  • PLED – мощность отдельного светодиода;
  • N – количество светодиодных элементов, подключаемых в нагрузку.

Максимальная мощность токового стабилизатора не должна быть меньше PН. Для нормальной работоспособности LED-драйвера рекомендуется обеспечить запас мощности минимум на 20÷30%.

Помимо мощности и количества СИД, мощность нагрузки, подключаемой к драйверу, зависит и от цвета светодиодных элементов. Дело в том, что светодиоды разного цвета обладают разной величиной падения напряжения при одинаковом значении тока. Так, например, у светодиода CREE XP-E красного цвета падение напряжения при токе в 350 мА составляет 1,9÷2,4 В, и средняя мощность потребления будет порядка 750 мВт. У зеленого светодиодного элемента при том же токе падение напряжения будет 3,3÷3,9 В, а средняя мощность составит уже почти 1,25 Вт. Соответственно стабилизатором тока рассчитанным на мощность 10 Вт можно запитывать 12÷13 СИД красного цвета или 7-8 зеленых светодиодов.

Виды стабилизаторов по типу устройства

Токовые стабилизаторы для светоизлучающих диодов разделяются по типу устройства на импульсные и линейные.

У линейного драйвера выходом является токовый генератор, обеспечивающий плавную стабилизацию выходного тока при неустойчивом входном напряжении, не создавая при этом высокочастотных электромагнитных помех. Такие устройства имеют простую конструкцию и невысокую стоимость, однако не очень высокий КПД (до 80%) сужает область их использования до маломощных LED-элементов и лент.

Устройства импульсного типа позволяют создавать на выходе череду токовых импульсов высокой частоты. Подобные драйвера работают по принципу широтно-импульсной модуляции (ШИМ), то есть средняя величина тока на выходе определяется отношением ширины импульсов к их частоте. Подобные устройства более востребованы в силу своей компактности и более высокого КПД, составляющего порядка 95%. Однако в сравнении с линейными драйверами ШИМ стабилизаторы имеют больший уровень электромагнитных помех.

Как подобрать драйвер для светодиодов

Необходимо сразу заметить, что резистор не может являться полноценной заменой драйверу, поскольку он не в состоянии защитить светодиоды от перепадов в сети и импульсных помех. Также не лучшим вариантом будет использование линейного источника тока вследствие его низкой эффективности, ограничивающей возможности стабилизатора.

При выборе LED-драйвера для светодиодов стоит придерживаться следующих основных рекомендаций:

  • приобретать стабилизатор тока лучше всего одновременно с нагрузкой;
  • учитывать падение напряжения на СИД;
  • ток высокого номинала уменьшает КПД светодиода и приводит его перегреву;
  • учитывать мощность нагрузки, подключаемой к драйверу.

Также необходимо обращать внимание, чтобы на корпусе стабилизатора была указана его мощность, рабочие диапазоны входного и выходного напряжения, номинальный стабилизированный ток и степень влаго- и пылезащищенности устройства.

Рекомендация! Насколько мощный и качественный будет драйвер для светодиодной ленты или СИД выбирать, конечно же, вам. Тем не менее, следует помнить, что для нормальной работы всей создаваемой системы освещения лучше всего купить фирменный преобразователь, особенно если речь идет о светодиодных прожекторах и других мощных осветительных приборах.

Подключение преобразователей тока для светодиодов: схема драйвера для светодиодной лампы 220 В

Большинство производителей выпускают драйвера на интегральных микросхемах (ИМС), которые позволяют запитываться от пониженного напряжения. Все преобразователи для , существующие на данный момент, делятся на простые, созданные на основе 1÷3 транзисторов и более сложные, выполненные с применением микросхем с ШИМ.

Выше представлена схема драйвера на базе микросхемы, но как мы упоминали, существуют способы подключения при помощи резисторов и транзисторов. На самом деле вариантов подключения много и рассмотреть их все подробно в одном обзоре просто невозможно. На просторах интернета можно найти практически любую схему, подходящую именно для вашей ситуации.

Как рассчитать токовый стабилизатор для светодиодного освещения

Для определения выходного напряжения преобразователя требуется рассчитать соотношение мощности и тока. Так, например, при мощности 3 Вт и токе 0,3 А максимальное напряжение на выходе будет равно 10 В. Далее необходимо определиться со способом подключения, параллельное или последовательное, а также количеством светодиодов. Дело в том, что от этого зависит номинальная мощность и напряжение на выходе драйвера. После вычисления всех этих параметров можно подбирать соответствующий стабилизатор.

Стоит отметить, что у преобразователей рассчитанных на определенное количество LED-элементов имеется защита от внештатных ситуаций. Такой тип устройств отличается некорректной работой при подключении меньшего числа светодиодов – наблюдается мерцание или вообще не работают.

Диммируемый драйвер для LED-элементов - что это?

Последние модели преобразователей для светодиодов адаптированы для работы с регуляторами яркости свечения полупроводниковых кристаллов – . Использование этих устройств позволяет более рационально использовать электроэнергию и увеличить ресурс LED-элемента.

Диммируемые преобразователи бывают двух типов. Одни включены в цепь между стабилизатором и светодиодными элементами освещения и работают посредством ШИМ-управления. Преобразователи подобного типа используются для работы со светодиодными лентами, бегущей строкой и т.п.

Во втором варианте диммер устанавливается на разрыве между источником питания и стабилизатором, а принцип работы заключается, как в управлении параметрами тока, проходящего через светодиоды, так и при помощи широтно-импульсной модуляции.

Особенности китайских преобразователей тока для светодиодов

Высокая востребованность драйверов для LED-освещения привела к их массовому производству в азиатском регионе, частности в Китае. А эта страна славится не только качественной электроникой, но и массовым производством всевозможных подделок. Светодиодные драйвера китайского производства представляют собой импульсные преобразователи тока, как правило, рассчитанные на 350÷700 мА и в бескорпусном исполнении.

Преимущества китайских преобразователей тока заключаются лишь в невысокой стоимости и наличии гальванической развязки, а вот недостатков все-таки больше и состоят они в:

  • высоком уровне радиопомех;
  • ненадежности, вызванной дешевыми схемными решениями;
  • незащищенность от сетевых колебаний и перегрева;
  • высокий уровень пульсаций на выходе стабилизатора;
  • малый срок эксплуатации.

Обычно комплектующие китайского производства работают на пределе своих возможностей, без наличия какого-либо запаса. Поэтому если желаете создать надежно работающую систему освещения лучше всего покупать преобразователь для светодиодов от известного проверенного производителя.

Срок эксплуатации токовых преобразователей

Как и любое электронное устройство, драйвер для светодиодного источника тока имеет определенный срок эксплуатации, который зависит от следующих факторов:

  • стабильность напряжения в сети;
  • температурные перепады;
  • уровень влажности.

Известные производители дают гарантию на свои изделия в среднем на 30 000 часов работы. Дешевые самые простые стабилизаторы рассчитаны на эксплуатацию в течение 20 000 часов, среднего качества – 20 000 ч и японские – до 70 000 ч.

Схема светодиодного драйвера на базе РТ 4115

Благодаря появлению большого количества светодиодных элементов с мощностью 1÷3 Вт и невысокой ценой, большинство людей предпочитает на их основе делать домашнее и автомобильное освещение. Однако для этого необходим драйвер, который позволит стабилизировать ток до номинального значения.

Для корректной работы преобразователя рекомендуется использовать танталовые конденсаторы. Если не установить конденсатор по питанию, то интегральная микросхема (ИМС) просто выйдет из строя при включении устройства в сеть. Выше представлена схема драйвера для светодиода на ИМС PT4115.

Как сделать своими руками драйвер для светодиодов

При помощи готовых микросхем даже начинающий радиолюбитель в состоянии собрать преобразователь для светодиодов различной мощности. Для этого требуется умение чтения электросхем и опыт работы с паяльником.

Собрать токовый стабилизатор для 3-ваттных стабилизаторов, можно используя микросхему от китайского производителя PowTech – PT4115. Данная ИМС может быть использована для светодиодных элементов с мощностью более 1 Вт и состоит из блоков управления с довольно мощным транзистором на выходе. Преобразователь, созданный на основе PT4115, имеет высокую эффективность и минимальный набор компонентов.








Как видим при наличии опыта, знаний и желания можно собрать светодиодный драйвер практически по любой схеме. Теперь рассмотрим пошаговую инструкцию создания простейшего токового преобразователя для 3-х LED-элементов мощность по 1 Вт, из зарядного устройства для мобильного телефона. Кстати, это поможет лучше разобраться в работе устройства и позднее перейти к более сложным схемам, рассчитанным на большее количество светодиодов и ленты.

Инструкция по сборке драйвера для светодиодов

Изображение Описание этапа
Для сборки стабилизатора на потребуется старое зарядное устройство от мобильного телефона. Мы взяли от «Самсунга», так они надежны. Зарядное устройство с параметрами 5 В и 700 мА аккуратно разобрать.
Также нам понадобится переменный (подстроечный) резистор на 10 кОм, 3 светодиода по 1 Вт и шнур с вилкой.
Вот так выглядит разобранное зарядное, которое мы будет переделывать.
Выпаиваем выходной резистор на 5 кОм и на его место ставим «подстроечник».
Далее находим выход на нагрузку и определив полярность припаиваем светодиоды, заранее собранные последовательно.
Выпаиваем старые контакты от шнура и на их место подсоединяем провод с вилкой. Перед тем как проверить на работоспособность драйвер для светодиодов нужно убедиться в правильности соединений, их прочности и чтобы ничего не создало короткого замыкания. Только после этого можно приступать к тестам.
Подстроечным резистором начинаем регулировку пока светодиоды не начнут светиться.
Как видим LED-элементы горят.
Тестером проверяем необходимые нам параметры: выходное напряжение, ток и мощность. При необходимости выполняем регулировку резистором.
Вот, и все! Светодиоды горят нормально, нигде ничего не искрит и не дымит, а значит переделка прошла успешно, с чем вас и поздравляем.

Как видите сделать простейший драйвер для светодиодов очень просто. Конечно, опытным радиолюбителям эта схема может быть не интересна, но для новичка она отлично подойдет для практики.

Широкое распространение светодиодов повлекло за собой массовое производство блоков питания для них. Такие блоки называются драйверами. Основной их особенностью является то, что они способны стабильно поддерживать на выходе заданный ток. Другими словами, драйвер для светодиодов (LED) – это источник тока для их питания.

Назначение

Поскольку светодиод — это полупроводниковые элементы, ключевой характеристикой, определяющей яркость их свечения, является не напряжение, а ток. Чтобы они гарантированно отработали заявленное количество часов, необходим драйвер, — он стабилизирует ток, протекающий через цепь светодиодов. Возможно использование маломощных светоизлучающих диодов и без драйвера, в этом случае его роль выполняет резистор.

Применение

Драйверы применяются как при питании светодиода от сети 220В, так и от источников постоянного напряжения 9-36 В. Первые используются при освещении помещений светодиодными лампами и лентами, вторые чаще встречаются в автомобилях, велосипедных фарах, переносных фонарях и т.д.

Принцип работы

Как уже было сказано, драйвер – это источник тока. Его отличия от источника напряжения проиллюстрированы ниже.

Источник напряжения создает на своем выходе некоторое напряжение, в идеале не зависящее от нагрузки.

Например, если подключить к источнику напряжением 12 В резистор 40 Ом, через него пойдет ток 300 мА.

Если подключить параллельно два резистора, суммарный ток составит уже 600 мА при том же напряжении.

Драйвер же поддерживает на своем выходе заданный ток. Напряжение при этом может изменяться.

Подключим так же резистор 40 Ом к драйверу 300 мА.

Драйвер создаст на резисторе падение напряжения 12 В.

Если подключить параллельно два резистора, ток по-прежнему будет 300 мА, а напряжение упадет до 6 В:

Таким образом, идеальный драйвер способен обеспечить нагрузке номинальный ток вне зависимости от падения напряжения. То есть светодиод с падением напряжения 2 В и током 300 мА будет гореть так же ярко, как и светодиод напряжением 3 В и током 300 мА.

Основные характеристики

При подборе нужно учитывать три основных параметра: выходное напряжение, ток и потребляемая нагрузкой мощность.

Напряжение на выходе драйвера зависит от нескольких факторов:

  • падение напряжения на светодиоде;
  • количество светодиодов;
  • способ подключения.

Ток на выходе драйвера определяется характеристиками светодиодов и зависит от следующих параметров:

  • мощность светодиодов;
  • яркость.

Мощность светодиодов влияет на потребляемый ими ток, который может варьироваться в зависимости от требуемой яркости. Драйвер должен обеспечить им этот ток.

Мощность нагрузки зависит от:

  • мощности каждого светодиода;
  • их количества;
  • цвета.

В общем случае потребляемую мощность можно рассчитать как

где Pled — мощность светодиода,

N — количество подключаемых светодиодов.

Максимальная мощность драйвера не должна быть меньше.

Стоит учесть, что для стабильной работы драйвера и предотвращения выхода его из строя следует обеспечить запас по мощности хотя бы 20-30%. То есть должно выполняться следующее соотношение:

где Pmax — максимальная мощность драйвера.

Кроме мощности и количества светодиодов, мощность нагрузки зависит еще от их цвета. Светодиоды разных цветов имеют разное падение напряжения при одинаковом токе. Например, красный светодиод XP-E обладает падением напряжения 1.9-2.4 В при токе 350 мА. Средняя потребляемая им мощность таким образом составляет около 750 мВт.

У XP-E зеленого цвета падение 3.3-3.9 В при том же токе, и его средняя мощность составит уже около 1.25 Вт. То есть драйвером, рассчитанным на 10 ватт, можно питать либо 12-13 красных светодиодов, либо 7-8 зеленых.

Как подобрать драйвер для светодиодов. Способы подключения LED

Допустим, имеется 6 светодиодов с падением напряжения 2 В и током 300 мА. Подключить их можно различными способами, и в каждом случае потребуется драйвер с определенными параметрами:


Соединять таким образом параллельно 3 и более светодиодов недопустимо, так как при этом через них может пойти слишком большой ток, в результате чего они быстро выйдут из строя.

Обратите внимание, что во всех случаях мощность драйвера составляет 3.6 Вт и не зависит от способа подключения нагрузки.

Таким образом, целесообразнее выбирать драйвер для светодиодов уже на этапе закупки последних, предварительно определив схему подключения. Если же сначала приобрести сами светодиоды, а потом подбирать к ним драйвер, это может оказаться нелегкой задачей, поскольку вероятность того, что Вы найдете именно тот источник питания, который сможет обеспечить работу именно этого количества светодиодов, включенных по конкретной схеме, невелика.

Виды

В общем случае драйверы для светодиодов можно разделить на две категории: линейные и импульсные.

У линейного выходом служит генератор тока. Он обеспечивает стабилизацию выходного тока при нестабильном входном напряжении; причем подстройка происходит плавно, не создавая высокочастотных электромагнитных помех. Они просты и дешевы, но невысокий КПД (менее 80%) ограничивает сферу их применения маломощными светодиодами и лентами.

Импульсные представляют собой устройства, создающие на выходе серию высокочастотных импульсов тока.

Обычно они работают по принципу широтно-импульсной модуляции (ШИМ), то есть среднее значение выходного тока определяется отношением ширины импульсов к периоду их следования (эта величина называется коэффициентом заполнения).

На диаграмме выше показан принцип работы ШИМ-драйвера: частота импульсов остается постоянной, но изменяется коэффициент заполнения от 10% до 80%. Это ведет к изменению среднего значения тока I cp на выходе.

Такие драйверы получили широкое распространение благодаря компактности и высокому КПД (около 95%). Основным недостатком является больший по сравнению с линейными уровень электромагнитных помех.

Светодиодный драйвер на 220 В

Для включения в сеть 220 В выпускаются как линейные, так и импульсные. Существуют драйверы с гальванической развязкой от сети и без нее. Основными преимуществами первых являются высокий КПД, надежность и безопасность.

Без гальванической развязки обычно дешевле, но менее надежны и требуют осторожности при подключении, поскольку есть вероятность поражения током.

Китайские драйверы

Востребованность драйверов для светодиодов способствует их массовому производству в Китае. Эти устройства представляют собой импульсные источники тока, обычно на 350-700 мА, часто не имеющие корпуса.

Китайский драйвер для светодиода 3w

Основные их достоинства – низкая цена и наличие гальванической развязки. Недостатки следующие:

  • низкая надежность из-за использования дешевых схемных решений;
  • отсутствие защиты от перегрева и колебаний в сети;
  • высокий уровень радиопомех;
  • высокий уровень пульсаций на выходе;
  • недолговечность.

Срок службы

Обычно срок службы драйвера меньше, чем у оптической части – производители дают гарантию на 30000 часов работы. Это связано с такими факторами, как:

  • нестабильность сетевого напряжения;
  • перепады температур;
  • уровень влажности;
  • загруженность драйвера.

Самым слабым звеном светодиодного драйвера являются сглаживающие конденсаторы, которые имеют тенденцию к испарению электролита, особенно в условиях повышенной влажности и нестабильного питающего напряжения. В результате уровень пульсаций на выходе драйвера повышается, что негативно сказывается на работе светодиодов.

Также на срок службы влияет неполная загруженность драйвера. То есть если он, рассчитан на 150 Вт, а работает на нагрузку 70 Вт, половина его мощности возвращается в сеть, вызывая ее перегрузку. Это провоцирует частые сбои питания. Рекомендуем почитать про .

Схемы драйверов (микросхемы) для светодиодов

Многие производители выпускают специализированные микросхемы драйверов. Рассмотрим некоторые из них.

ON Semiconductor UC3845 – импульсный драйвер с выходным током до 1А. Схема драйвера для светодиода 10w на этой микросхеме приведена ниже.

Supertex HV9910 – очень распространенная микросхема импульсного драйвера. Ток на выходе не превышает 10 мА, не имеет гальванической развязки.

Простой драйвер тока на этой микросхеме представлен ниже.

Texas Instruments UCC28810. Сетевой импульсный драйвер, имеет возможность организовать гальваническую развязку. Выходной ток до 750 мА.

Еще одна микросхема этой фирмы, — драйвер для питания мощных светодиодов LM3404HV — описывается в этом видео:

Устройство работает по принципу резонансного преобразователя типа Buck Converter, то есть функция поддержания требуемого тока здесь частично возложена на резонансную цепь в виде катушки L1 и диода Шоттки D1 (типовая схема приведена ниже). Также имеется возможность задания частоты коммутации подбором резистора R ON .

Maxim MAX16800 – линейная микросхема, работает при малых напряжениях, поэтому на ней можно построить драйвер 12 вольт. Выходной ток – до 350 мА, поэтому может использоваться как драйвер питания для мощного светодиода, фонарика, и т.д. Есть возможность диммирования. Типовая схема и структура представлены ниже.

Заключение

Светодиоды гораздо более требовательны к источнику питания, чем другие источники света. Например, превышение тока на 20% для люминесцентной лампы не повлечет за собой серьезного ухудшения характеристик, для светодиодов же срок службы сократится в несколько раз. Поэтому выбирать драйвер для светодиодов следует особенно тщательно.

Стандартная схема драйвера светодиодов РТ4115 представлена на рисунке ниже:

Напряжение питания должно быть по-крайней мере на 1.5-2 вольта выше, чем суммарное напряжение на светодиодах. Соответственно, в диапазоне питающих напряжений от 6 до 30 вольт, к драйверу можно подключить от 1 до 7-8 светодиодов.

Максимальное напряжение питания микросхемы 45 В , но работа в таком режиме не гарантируется (лучше обратите внимание на аналогичную микросхему ).

Ток через светодиоды имеет треугольную форму с максимальным отклонением от среднего значения ±15%. Средний ток через светодиоды задается резистором и рассчитывается по формуле:

I LED = 0.1 / R

Минимально допустимое значение R = 0.082 Ом, что соответствует максимальному току 1.2 А.

Отклонение тока через светодиод от расчетного не превышает 5%, при условии монтажа резистора R с максимальным отклонением от номинала 1%.

Итак, для включения светодиода на постоянную яркость вывод DIM оставляем висеть в воздухе (он внутри PT4115 подтянут к уровню 5В). При этом ток на выходе определяется исключительно сопротивлением R.

Если между выводом DIM и "землей" включить конденсатор, мы получим эффект плавного зажигания светодиодов. Время выхода на максимальную яркость будет зависеть от емкости конденсатора, чем она больше, тем дольше будет разгораться светильник.

Для справки: каждый нанофарад емкости увеличивает время включения на 0.8 мс.

Если же требуется сделать диммируемый драйвер для светодиодов с регулировкой яркости от 0 до 100%, то можно прибегнуть к одному из двух способов:

  1. Первый способ предполагает подачу на вход DIM постоянного напряжения в диапазоне от 0 до 6В. При этом регулировка яркости от 0 до 100% осуществляется при напряжении на выводе DIM от 0.5 до 2.5 вольт. Увеличение напряжения выше 2.5 В (и вплоть до 6 В) никак не влияет на ток через светодиоды (яркость не меняется). Напротив, уменьшение напряжения до уровня 0.3В или ниже приводит к отключению схемы и переводу ее в режим ожидания (ток потребления при этом падает до 95 мкА). Таким образом, можно эффективно управлять работой драйвера без снятия напряжения питания.
  2. Второй способ подразумевает подачу сигнала с широтно-импульсного преобразователя с выходной частотой 100-20000 Гц, яркость будет определяться коэффициентом заполнения (скважностью импульсов). Например, если высокий уровень будет держаться 1/4 часть периода, а низкий уровень, соответственно, 3/4, то это будет соответствовать уровню яркости в 25% от максимума. Надо понимать, что частота работы драйвера определяется индуктивностью дросселя и ни коем образом не зависит от частоты диммирования.

Схема драйвера светодиодов PT4115 с регулятором яркости постоянным напряжением представлена на рисунке ниже:

Такая схема регулировки яркости светодиодов прекрасно работает благодаря тому, что внутри микросхемы вывод DIM "подтянут" к шине 5В через резистор сопротивлением 200 кОм. Поэтому, когда ползунок потенциометра находится в крайнем нижнем положении, образуется делитель напряжения 200 + 200 кОм и на выводе DIM формируется потенциал 5/2=2.5В, что соответствует 100%-ой яркости.

Как работает схема

В первый момент времени, при подаче входного напряжения, ток через R и L равен нулю и встроенный в микросхему выходной ключ открыт. Ток через светодиоды начинает плавно нарастать. Скорость нарастания тока зависит от величины индуктивности и напряжения питания. Внутрисхемный компаратор сравнивает потенциалы до и после резистора R и, как только разница составит 115 мВ, на его выходе появляется низкий уровень, который закрывает выходной ключ.

Благодаря запасенной в индуктивности энергии, ток через светодиоды не исчезает мгновенно, а начинает плавно уменьшаться. Постепенно уменьшается и падение напряжения на резисторе R. Как только оно достигнет величины в 85 мВ, компаратор снова выдаст сигнал на открытие выходного ключа. И весь цикл повторяется сначала.

Если необходимо уменьшить размах пульсаций тока через светодиоды, допускается подключить конденсатор параллельно светодиодам. Чем больше будет его емкость, тем сильнее будет сглажена треугольная форма тока через светодиоды и тем более она станет похожа на синусоидальную. Конденсатор не влияет на рабочую частоту или эффективность работы драйвера, но увеличивает время установления заданного тока через светодиод.

Важные нюансы сборки

Важным элементом схемы является конденсатор C1. Он не просто сглаживает пульсации, но и компенсирует энергию, накопленную в катушке индуктивности в момент закрытия выходного ключа. Без C1 запасенная в дросселе энергия поступит через диод Шоттки на шину питания и может спровоцировать пробой микросхемы. Поэтому если включить драйвер без шунтирующего питание конденсатора, микросхема почти гарантированно накроется. И чем больше индуктивность дросселя, тем больше шансов спалить микруху.

Минимальная емкость конденсатора C1 - 4.7 мкФ (а при питании схемы пульсирующим напряжением после диодного моста - не менее 100 мкФ).

Конденсатор должен располагаться как можно ближе к микросхеме и иметь как можно более низкое значение ESR (т.е. танталовые кондеры приветствуются).

Также очень важно ответственно подойти к выбору диода. Он должен иметь малое прямое падение напряжения, короткое время восстановления во время переключения и стабильность параметров при повышении температуры p-n перехода, чтобы не допустить увеличения тока утечки.

В принципе, можно взять и обычный диод, но лучше всего под эти требования подходят диоды Шоттки. Например, STPS2H100A в SMD-исполнении (прямое напряжение 0.65V, обратное - 100V, ток в импульсе до 75А, рабочая температура до 156°C) или FR103 в корпусе DO-41 (обратное напряжение до 200V, ток до 30А, температура до 150°C). Очень неплохо себя показали распространенные SS34 , которые можно надергать из старых плат или купить целую пачку за 90 рублей .

Индуктивность дросселя зависит от выходного тока (см. таблицу ниже). Неверно выбранное значение индуктивности может привести к увеличению рассеиваемой на микросхеме мощности и выходу за пределы рабочего температурного режима.

При перегреве выше 160°C микросхема автоматически выключится и будет находиться в выключенном состоянии до тех пор пока не остынет до 140°C, после чего запустится автоматически.

Несмотря на имеющиеся табличные данные, допускается монтаж катушки с отклонением индуктивности в большую сторону от номинала. При этом изменяется КПД всей схемы, но она остается работоспособной.

Дроссель можно взять фабричный, а можно сделать своими руками из ферритового кольца от сгоревшей материнской платы и провода ПЭЛ-0,35.

Если важна максимальная автономность устройства (переносные светильники, фонари), то, в целях повышения эффективности схемы, имеет смысл потратить время на тщательный подбор дросселя. На малых токах индуктивность должна быть больше, чтобы минимизировать погрешности управления током, возникающие из-за задержки при переключении транзистора.

Дроссель должен располагаться как можно ближе к выводу SW, в идеале - подключен напрямую к нему.

И, наконец, самый прецизионный элемент схемы драйвера светодиода - резистор R. Как уже было сказано, его минимальное значение равно 0,082 Ом, что соответствует току 1,2 А.

К сожалению, не всегда удается найти резистор подходящего номинала, поэтому самое время вспомнить формулы расчета эквивалентного сопротивления при последовательном и параллельном включении резисторов:

  • R посл = R 1 +R 2 +…+R n ;
  • R пар = (R 1 xR 2) / (R 1 +R 2).

Комбинируя различные способы включения, можно получить требуемое сопротивление из нескольких имеющихся под рукой резисторов.

Важно так развести плату, чтобы ток диода Шоттки не протекал по дорожке между R и VIN, так как это может привести к погрешностям измерения тока нагрузки.

Низкая стоимость, высокая надежность и стабильность характеристик драйвера на РТ4115 способствует его повсеместному использованию в светодиодных лампах. Практически каждая вторая 12-вольтовая LED-лампа с цоколем MR16 собрана на PT4115 (или СL6808).

Сопротивление токозадающего резистора (в Омах) рассчитывается точно по такой же формуле:

R = 0.1 / I LED [A]

Типовая схема включения выглядит так:

Как видите, все очень похоже на схему светодиодной лампы с драйвером на РТ4515. Описание работы, уровни сигналов, особенности используемых элементов и компоновки печатной платы точно такие же как у , поэтому повторяться не имеет смысла.

CL6807 продают по 12 руб/шт, надо только смотреть, чтоб не подсунули паяные (рекомендую брать ).

SN3350

SN3350 - очередная недорогая микросхема для светодиодных драйверов (13 руб/штучка). Является практически полным аналогом PT4115 с той лишь разницей, что напряжение питания может лежать в диапазоне от 6 до 40 вольт, а максимальный выходной ток ограничен 750 миллиамперами (длительный ток не должен превышать 700 мА).

Как и все вышеописанные микросхемы, SN3350 представляет собой импульсный step-down преобразователь с функцией стабилизации выходного тока. Как обычно, ток в нагрузке (а в нашем случае в роли нагрузки выступают один или несколько светодиодов) задается сопротивлением резистора R:

R = 0.1 / I LED

Чтобы не превысить значение максимального выходного тока, сопротивление R не должно быть ниже 0.15 Ом.

Микросхема выпускается в двух корпусах: SOT23-5 (максимум 350 мА) и SOT89-5 (700 мА).

Как обычно, подавая постоянное напряжение на вывод ADJ, мы превращаем схему в простейший регулируемый драйвер для светодиодов.

Особенностью данной микросхемы является несколько иной диапазон регулировки: от 25% (0.3В) до 100% (1.2В). При снижении потенциала на выводе ADJ до 0.2В, микросхема переходит в спящий режим с потреблением в районе 60 мкА.

Типовая схема включения:

Остальные подробности смотрите в спецификации на микросхему (pdf-файл).

ZXLD1350

Не смотря на то, что эта микросхема является очередным клоном , некоторые отличия в технических характеристиках не допускают их прямую замену друг на друга.

Вот главные отличия:

  • микросхема стартует уже при 4.8В, но на нормальный режим работы выходит только при напряжении питания от 7 до 30 Вольт (на полсекунды допускается подавать до 40В);
  • максимальный ток нагрузки - 350 мА;
  • сопротивление выходного ключа в открытом состоянии - 1.5 - 2 Ома;
  • изменением потенциала на выводе ADJ от 0.3 до 2.5В можно менять выходной ток (яркость светодиода) в диапазоне от 25 до 200%. При напряжении 0.2В в течении, как минимум, 100 мкс, драйвер переходит в спящий режим с низким потреблением энергопотреблением (порядка 15-20 мкА);
  • если регулировка осуществляется ШИМ-сигналом, то при частоте следования импульсов ниже 500 Гц, диапазон изменения яркости составляет 1-100%. Если же частота выше 10 кГц, то от 25% до 100%;

Максимальное напряжение, которое можно подавать на вход регулировки яркости (ADJ) составляет 6В. При этом в диапазоне от 2.5 до 6В драйвер выдает максимальный ток, который задан токоограничительным резистором. Сопротивление резистора рассчитывается точно так же, как во всех вышеперечисленных микросхемах:

R = 0.1 / I LED

Минимальное сопротивление резистора - 0.27 Ом.

Типовая схема включения ничем не отличается от своих собратьев:

Без конденсатора С1 подавать питание не схему НЕЛЬЗЯ!!! В лучшем случае микросхема будет перегреваться и выдавать нестабильные характеристики. В худшем случае - мгновенно выйдет из строя.

Более подробные характеристики ZXLD1350 можно найти в даташите на эту микросхему .

Стоимость микросхемы неоправданно высокая (), при том, что выходной ток довольно небольшой. В общем, сильно на любителя. Я б не связывался.

QX5241

QX5241 - это китайский аналог MAX16819 (MAX16820), но в более удобном корпусе. Также выпускается под наименованиями KF5241, 5241B. Имеет маркировку "5241a" (см. фото).

В одном известном магазине их продают чуть ли не на вес (10 штук за 90 руб).

Драйвер работает по точно такому же принципу, как и все вышеописанные (понижающий преобразователь непрерывного действия), однако не содержит в своем составе выходной ключ, поэтому для работы требуется подключение внешнего полевого транзистора.

Можно взять любой N-канальный MOSFET с подходящим током стока и напряжением сток-исток. Подойдут, например, такие: SQ2310ES (до 20V!!!), 40N06 , IRF7413 , IPD090N03L , IRF7201 . Вообще, чем ниже будет напряжение открытия, тем лучше.

Вот некоторые ключевые характеристики LED-драйвера на QX5241:

  • максимальный выходной ток - 2.5 А;
  • КПД до 96%;
  • максимальная частота диммирования - 5 кГц;
  • максимальная рабочая частота преобразователя - 1 МГц;
  • точность стабилизации тока через светодиоды - 1%;
  • напряжение питания - 5.5 - 36 Вольт (нормально работает и при 38!);
  • выходной ток рассчитывается по формуле: R = 0.2 / I LED

Более подробно читайте в спецификации (на инглише).

Светодиодный драйвер на QX5241 содержит мало деталей и собирается всегда по такой схеме:

Микросхема 5241 бывает только в корпусе SOT23-6, так что со паяльником для пайки кастрюль к ней лучше не подходить. После монтажа плату следует хорошенько промывать от флюса, любые непонятные загрязнения могут негативно сказываться на режиме работы микросхемы.

Разница между питающим напряжением и суммарным падением напряжения на диодах должно быть вольта 4 (или больше). Если меньше - то наблюдаются какие-то глюки в работе (нестабильность тока и свист дросселя). Так что берите с запасом. Причем, чем больше выходной ток, тем больше запас по напряжению. Хотя, возможно, мне просто попался неудачный экземпляр микросхемы.

Если входное напряжение меньше, чем общее падение на светодиодах, то генерация срывается. При этом выходной полевик полностью открывается и светодиоды светятся (естественно, не на полную мощность, так как напряжения маловато).

AL9910

Diodes Incorporated создала одну весьма интересную микросхему драйвера светодиодов: AL9910. Любопытна она тем, что ее рабочий диапазон напряжений позволяет подключать ее прямо к сети 220В (через простой диодный выпрямитель).

Вот ее основные характеристики:

  • входное напряжение - до 500В (до 277В для переменки);
  • встроенный стабилизатор напряжения для питания микросхемы, не требующий гасящего резистора;
  • возможность регулировки яркости путем изменения потенциала на управляющей ноге от 0.045 до 0.25В;
  • встроенная защита от перегрева (срабатывает при 150°С);
  • рабочая частота (25-300 кГц) задается внешним резистором;
  • для работы необходим внешний полевой транзистор;
  • выпускается в восьминогих корпусах SO-8 и SO-8EP.

Драйвер, собранный на микросхеме AL9910 не имеет гальванической развязки с сетью, поэтому должен использоваться только там, где невозможно прямое прикосновение к элементам схемы.

Небольшая лабораторка на тему «какой драйвер лучше?» Электронный или на конденсаторах в роли балласта? Думаю, что у каждого есть своя ниша. Постараюсь рассмотреть все плюсы и минусы и тех и других схем. Напомню формулу расчёта балластных драйверов. Может кому интересно?

Свой обзор построю по простому принципу. Сначала рассмотрю драйверы на конденсаторах в роли балласта. Затем посмотрю на их электронных собратьев. Ну а в конце сравнительный вывод.
А теперь перейдём к делу.
Берём стандартную китайскую лампочку. Вот её схема (немного усовершенствованная). Почему усовершенствованная? Эта схема подойдёт к любой дешёвой китайской лампочке. Отличие будет только в номиналах радиодеталей и отсутствии некоторых сопротивлений (в целях экономии).


Бывают лампочки с отсутствующим С2 (очень редко, но бывает). В таких лампочках коэффициент пульсаций 100%. Очень редко ставят R4. Хотя сопротивление R4 просто необходимо. Оно будет вместо предохранителя, а также смягчит пусковой ток. Если в схеме отсутствует, лучше поставить. Ток через светодиоды определяет номинал ёмкости С1. В зависимости от того, какой ток мы хотим пропустить через светодиоды (для самодельщиков), можно рассчитать его ёмкость по формуле (1).


Эту формулу я писАл много раз. Повторюсь.
Формула (2) позволяет сделать обратное. С её помощью можно посчитать ток через светодиоды, а затем и мощность лампочки, не имея Ваттметра. Для расчётов мощности нам ещё необходимо знать падение напряжения на светодиодах. Можно вольтметром измерить, можно просто посчитать (без вольтметра). Вычисляется просто. Светодиод ведёт себя в схеме как стабилитрон с напряжением стабилизации около 3В (есть исключения, но очень редкие). При последовательном подключении светодиодов падение напряжения на них равно количеству светодиодов, умноженному на 3В (если 5 светодиодов, то 15В, если 10 - 30В и т.д.). Всё просто. Бывает, что схемы собраны из светодиодов в несколько параллелей. Тогда надо будет учитывать количество светодиодов только в одной параллели.
Допустим, мы хотим сделать лампочку на десяти светодиодах 5730smd. По паспортным данным максимальный ток 150мА. Рассчитаем лампочку на 100мА. Будет запас по мощности. По формуле (1) получаем: С=3,18*100/(220-30)=1,67мкФ. Такой ёмкости промышленность не выпускает, даже китайская. Берём ближайшую удобную (у нас 1,5мкФ) и пересчитываем ток по формуле (2).
(220-30)*1,5/3,18=90мА. 90мА*30В=2,7Вт. Это и есть расчетная мощность лампочки. Всё просто. В жизни конечно будет отличаться, но не намного. Всё зависит от реального напряжения в сети (это первый минус драйвера), от точной ёмкости балласта, реального падения напряжения на светодиодах и т.д. При помощи формулы (2) вы можете рассчитать мощность уже купленных лампочек (уже упоминал). Падением напряжения на R2 и R4 можно пренебречь, оно незначительно. Можно подключить последовательно достаточно много светодиодов, но общее падение напряжения не должно превышать половины напряжения сети (110В). При превышении этого напряжения лампочка болезненно реагирует на все изменения напряжения. Чем больше превышает, тем болезненнее реагирует (это дружеский совет). Тем более, за этими пределами формула работает неточно. Точно уже не рассчитать.
Вот появился очень большой плюс у этих драйверов. Мощность лампочки можно подгонять под нужный результат подбором ёмкости С1 (как самодельных, так и уже купленных). Но тут же появился и второй минус. Схема не имеет гальванической развязки с сетью. Если ткнуть в любое место включенной лампочки отвёрткой-индикатором, она покажет наличие фазы. Трогать руками (включенную в сеть лампочку) категорически запрещено.
Такой драйвер имеет практически 100%-ный КПД. Потери только на диодах и двух сопротивлениях.
Его можно изготовить в течение получаса (по-быстрому). Даже плату травить необязательно.
Конденсаторы заказывал эти:


Диоды вот эти:





Но у этих схем есть ещё один серьёзный недостаток. Это пульсации. Пульсации частотой 100Гц, результат выпрямления сетевого напряжения.


У различных лампочек форма незначительно будет отличаться. Всё зависит от величины фильтрующей ёмкости С2. Чем больше ёмкость, тем меньше горбы, тем меньше пульсации. Необходимо смотреть ГОСТ Р 54945-2012. А там чёрным по белому написано, что пульсации частотой до 300Гц вредны для здоровья. Там же формула для расчёта (приложение Г).

Но это не всё. Необходимо смотреть Санитарные нормы СНиП 23-05-95 «ЕСТЕСТВЕННОЕ И ИСКУССТВЕННОЕ ОСВЕЩЕНИЕ». В зависимости от предназначения помещения максимально допустимые пульсации от 10 до 20%.
В жизни ничего просто так не бывает. Результат простоты и дешевизны лампочек налицо.
Пора переходить к электронным драйверам. Здесь тоже не всё так безоблачно.
Вот такой драйвер я заказывал. Это ссылка именно на него в начале обзора.


Почему заказал именно такой? Объясню. Хотел сам «колхозить» светильники на 1-3Вт-ных светодиодах. Подбирал по цене и характеристикам. Меня устроил бы драйвер на 3-4 светодиода с током до 700мА. Драйвер должен иметь в своём составе ключевой транзистор, что позволит разгрузить микросхему управления драйвером. Для уменьшения ВЧ пульсаций по выходу должен стоять конденсатор. Первый минус. Стоимость подобных драйверов (US $13.75 /10 штук) отличается в бОльшую сторону от балластных. Но тут же плюс. Токи стабилизации подобных драйверов 300мА, 600мА и выше. Балластным драйверам такое и не снилось (более 200мА не рекомендую).
Посмотрим на характеристики от продавца:

ac85-265v" that everyday household appliances."
load after 10-15v; can drive 3-4 3w led lamp beads series
600ma
А вот диапазон выходных напряжений маловат (тоже минус). Максимум, можно подцепить последовательно пять светодиодов. Параллельно можно подцеплять сколько угодно. Светодиодная мощность считается по формуле: Ток драйвера умножить на падение напряжения на светодиодах [количество светодиодов (от трёх до пяти) и умножить на падение напряжения на светодиоде (около 3В)].
Ещё один большой недостаток этих драйверов – большие ВЧ помехи. Некоторые экземпляры слышит не только ФМ радио, но и пропадает приём цифровых каналов ТВ при их работе. Частота преобразования составляет несколько десятков кГц. А вот защиты, как правило, никакой (от помех).


Под трансформатором что-то типа «экрана». Должно уменьшить помехи. Именно Этот драйвер почти не фонит.
Почему они фонят, становится ясно, если посмотреть на осциллограмму напряжения на светодиодах. Без конденсаторов ёлочка куда серьёзнее!


На выходе драйвера должен стоять не только электролит, но и керамика для подавления ВЧ помех. Высказал своё мнение. Обычно стоит либо то либо другое. Бывает, что ничего не стоит. Это бывает в дешёвых лампочках. Драйвер спрятан внутри, предъявить претензию будет сложно.
Посмотрим схему. Но предупрежу, она ознакомительная. Нанёс только основные элементы, которые необходимы нам для творчества (для понимания «что к чему»).


Погрешность в расчётах присутствует. Кстати, на мелких мощностях приборчик тоже подвирает.
А теперь посчитаем пульсации (теория в начале обзора). Посмотрим, что же видит наш глаз. К осциллографу подключаю фотодиод. Два снимка объединил в один для удобства восприятия. Слева лампочка выключена. Справа – лампочка включена. Смотрим ГОСТ Р 54945-2012. А там чёрным по белому написано, что пульсации частотой до 300Гц вредны для здоровья. А у нас около 100Гц. Для глаз вредно.


У меня получилось 20%. Необходимо смотреть Санитарные нормы СНиП 23-05-95 «ЕСТЕСТВЕННОЕ И ИСКУССТВЕННОЕ ОСВЕЩЕНИЕ». Использовать можно, но не в спальне. А у меня коридор. Можно СНиП и не смотреть.
А теперь посмотрим другой вариант подключения светодиодов. Это схема подключения к электронному драйверу.


Итого 3 параллели по 4 светодиода.
Вот, что показывает Ваттметр. 7,1Вт активной мощности.


Посмотрим, сколько доходит до светодиодов. Подключил к выходу драйвера амперметр и вольтметр.


Посчитаем чисто светодиодную мощность. Р=0,49А*12,1В=5,93Вт. Всё, что не хватает, взял на себя драйвер.
Теперь посмотрим, что же видит наш глаз. Слева лампочка выключена. Справа – лампочка включена. Частота повторения импульсов около 100кГц. Смотрим ГОСТ Р 54945-2012. А там чёрным по белому написано, что вредны для здоровья только пульсации частотой до 300Гц. А у нас около 100кГц. Для глаз безвредно.

Всё рассмотрел, всё измерил.
Теперь выделю плюсы и минусы этих схем:
Минусы лампочек с конденсатором в роли балласта по сравнению с электронными драйверами.
-Во время работы КАТЕГОРИЧЕСКИ нельзя касаться элементов схемы, они под фазой.
-Невозможно достичь высоких токов свечения светодиодов, т.к. при этом необходимы конденсаторы больших размеров. А увеличение ёмкости приводит к большим пусковым токам, портящим выключатели.
-Большие пульсации светового потока частотой 100Гц, требуют больших фильтрующих ёмкостей на выходе.
Плюсы лампочек с конденсатором в роли балласта по сравнению с электронными драйверами.
+Схема очень проста, не требует особых навыков при изготовлении.
+Диапазон выходных напряжений просто фантастический. Один и тот же драйвер будет работать и с одним и с сорока последовательно соединёнными светодиодами. У электронных драйверов выходные напряжения имеют намного более узкий диапазон.
+Низкая стоимость подобных драйверов, которая складывается буквально из стоимости двух конденсаторов и диодного моста.
+Можно изготовить и самому. Большинство деталей можно найти в любом сарае или гараже (старые телевизоры и т.д.).
+Можно регулировать ток через светодиоды подбором ёмкости балласта.
+Незаменимы как начальный светодиодный опыт, как первый шаг в освоении светодиодного освещения.
Есть ещё одно качество, которое можно отнести как к плюсам, так и к минусам. При использовании подобных схем с выключателями с подсветкой, светодиоды лампочки подсвечиваются. Лично для меня это скорее плюс, чем минус. Использую повсеместно как дежурное (ночное) освещение.
Умышленно не пишу, какие драйверы лучше, у каждого есть своя ниша.
Я выложил по максимуму всё, что знаю. Показал все плюсы и минусы этих схем. А выбор как всегда делать вам. Я лишь постарался помочь.
На этом всё!
Удачи всем.

Планирую купить +70 Добавить в избранное Обзор понравился +68 +157

У каждого диода, в свою очередь, в описании указано падение напряжения при разных токах. Например, для красного диода 660 нм при токе 600 мА оно составит 2,5 В:

Количество диодов, которое можно подключить на драйвер, суммарным падением напряжения должно укладываться в пределы выходного напряжения драйвера. То есть на драйвер 50Вт 600 мА с выходным напряжением 60-83 В можно подключить от 24 до 33 красных диодов 660 нм. (То есть 2,5*24 = 60, 2,5*33 = 82,5).

Другой пример:
Хотим собрать биколорную лампу красный + синий. Выбрали соотношение красного к синему 3:1 и хотим рассчитать, какой драйвер нужно взять для 42 красных и 14 синих диодов. Считаем: 42*2,5 + 14*3,5 = 154 В. Значит, нам потребуется два драйвера 50 Вт 600 мА, на каждый будет приходиться 21 красных и 7 синих диодов, суммарное падение напряжения на каждом получится по 77 В, что попадает в его выходное напряжение.

Теперь несколько важных пояснений:

1) Не стоит искать драйвер мощностью более 50 Вт: они есть, но они менее эффективны, чем аналогичный набор драйверов меньшей мощности. Более того, они будут сильно греться, что потребует от Вас дополнительных расходов на более мощное охлаждение. Кроме тго, драйвера мощностью более 50Вт как правило сильно дороже, например драйвер на 100Вт может быть дороже чем 2 драйвера по 50Вт. Поэтому гнаться за ними не стоит. Да и надежнее когда цепи светодиодов разделены на секции, если вдруг что-то перегорит - то сгорит не все а только чать. Поэтому выгодно разделять на несколько драйверов, а не стремиться все повесить на один. Вывод: 50Вт - оптимальный вариант, не больше.

2) Ток у драйверов бывает разный: 300 мА, 600 мА, 750 мА - это ходовые. Других вариантов довольно много.
По большому счету, более эффективным с точки зрения КПД на 1 Вт будет использование драйвера на 300 мА, также он не будет сильно нагружать светодиоды, и они будут меньше греться и дольше прослужат. Но главный минус таких драйверов, что диоды будут работать "вполсилы", и поэтому их потребуется примерно в два раза больше, чем для аналога с 600 мА.
Драйвер с током 750 мА будет питать диоды на пределе возможностей, поэтому диоды будут очень сильно греться, и им потребуется очень мощное, хорошо продуманное охлаждение. Но даже несмотря на это, они в любом случае деградируют от перегрева раньше среднего срока "жизни" светодиодных ламп работающих например на 500-600 мА токе.
Поэтому мы рекомендуем использовать драйверы с током 600 мА. Они получаются самым оптимальным решением с точки зрения соотношения цена-эффективность-срок службы.

3) Мощность диодов указывается номинальная, то есть максимально возможная. Но на максимум они никогда не запитываются (почему - см. п.2). Реальную мощность диода рассчитать очень просто: необходимо ток используемого драйвера умножить на падение напряжения диода. Например, при подключении драйвера на 600 mA к красному диоду 660 нм мы получим реальное напряжение на диоде: 0,6(А) * 2,5(В) = 1,5 Вт.