Радиоуправление на 4 команды схемы для игрушек. Простейшая однокомандная схема радиоуправления моделями (3 транзистора)

Описываемая аппаратура может быть использована для управления авиа- и судомоделями по радио в диапазоне частот 27,6—28 Мгц. Дальность действия аппаратуры в воздухе до 3—5 км, на земле — до 400—500 м. Аппаратура испытана на модели ракетоносца на гусеничном ходу, получившей приз на 22-й Всесоюзной выставке радиолюбителей-конструкторов.

Передатчик

Принципиальная схема передатчика показана на рис. 43. Задающий генератор собран на транзисторе Т1. Его колебательный контур L1C2 настроен на частоту 13,8—14 Мгц. Колебания высокой частоты через катушку связи L2 подаются на базу транзистора Т2 каскада удвоения частоты. Смещение на базе транзистора автоматическое, за счет детектирования токов высокой частоты эмиттерным переходом. Колебательный контур L3CC6 в цепи коллектора настроен на частоту 27,6—28 Мгц. Напряжение высокой частоты с этого контура подается на эмиттер транзистора Т3 выходного каскада передатчика.

В коллекторную цепь транзистора Т3 включен выходной контур L5C9, настроенный на частоту 27,6—28 Мгц. Связь антенны с выходным контуром емкостная, через конденсатор С10. Для увеличения отдачи энергии в антенну применена «удлинительная» катушка L6, которая вместе с антенной настраивается в резонанс с частотою выходного контура передатчика.

Антенной служит телескопическая антенна длиной 1 м от переносных приемников.

Модулятор на транзисторах Т4 и Т5 представляет собой генератор звуковых частот. Включая в цепь базы транзистора Т5 при помощи кнопок Кн—Кн4 конденсаторы С12—C15, можно получить четыре фиксированные звуковые частоты: 4 500, 4 000, 3500, 3000 гц, необходимые для подачи команд.

Рис. 43. Схема передатчика радиоуправления моделями.

В коллекторную цепь транзистора Г5 выходного каскада модулятора включен трансформатор Тр1. Напряжение звуковой частоты с вторичной обмоткой этого трансформатора подается в цепь базы Транзистора Т3 выходного каскада передатчика, осуществляя модуляцию несущей. При таком подключении модулятора к передатчику мощность модулятора может быть небольшая, а глубина модуляции выходного каскада достигает 70—85%.

Выходная мощность передатчика 1,5—2 вт.

Конструкция и детали. Детали передатчика монтируют на плате из листового гетинакса или стеклотекстолита размерами 130 X Х120 мм. Монтажную плату вместе с батареей питания (4 шт. Л-0,5) размещают в металлическом корпусе размерами 200X140X55 мм.

Расположение основных деталей на плате показано на рис. 44, а внешний вид передатчика со стороны передней панели — на рис. 45.

Данные катушек и дросселей передатчика приведены в табл. 4.

Транзисторы П403 можно заменить транзисторами П420— П423, П416, а МП40 — транзисторами МП39, МП41, МП42.

Рис. 44. Расположение деталей на панели передатчика.

В качестве выходного трансформатора модулятора применен согласующий трансформатор От карманного приемника, вторичная обмотка которого используется как модулирующая. Конденсаторы Са, С3, С6 и С9 типа КПК-1. Все резисторы, кроме R5, типа УЛМ или МЛТ, Резистор R3 проволочный (2,5 мм провода ПЭЛ 0,1), намотан на корпусе резистора ВС-0,25 сопротивлением не менее 10 ком. Кнопки Kн1—Kн4 любого типа.

Настройку передатчика начинают с проверки задающего генератора. При включении питания миллиамперметр в коллекторной цепи транзистора Т1 должен показывать ток в пределах 5—12 ма, а при замыкании катушки L1 уменьшиться на 2—3 ма. Если при замыкании катушки ток не изменяется, что указывает на то, что задающий генератор не работает, генерации добиваются подстроеч-ным конденсатором С3.

Частоту задающего генератора проверяют с помощью , она должна быть в пределах 13,8—14 Мгц. Изменением емкости конденсатора С3 добиваются, чтобы ток, потребляемый этим каскадом от батареи, был в пределах 10—12 ма. Такой ток соответствует наилучшему режиму работы задающего генератора.

Рис, 45. Расположение органов уп равления на панели передатчика.

Контур L3C5С6 конденсатором С5 настраивают на частоту 27,6—28 Мгц. Момент резонанса можно определить по ГИР, настроенному на эту частоту, поднеся его катушку к катушке L3. В момент резонанса стрелка прибора должна максимально отклониться. Можно также воспользоваться простейшим высокочастотным пробником — витком провода ПЭВ 0,8, замкнутым на лампочку накаливания 25 в X 0,075 а. Если виток пробника надеть на катушку Л3, то в момент резонанса лампочка должна слабо светиться. Не исключено, что для точной настройки контура L3C5C6 на частоту 27,6—28 Мгц придется подбирать емкость конденсатора С5.

После этого настраивают выходной каскад передатчика. При настройке контура L5C9 конденсатором С9 на частоту 27,6—28 Мгц в момент резонанса миллиамперметр в цепи этого контура должен показывать минимальный ток, а лампочка высокочастотного пробника, поднесенного к катушке L5 ярко светиться.

Для настройки антенны потребуется простейший волномер, схема которого показана на рис. 46.

Для контроля настройки антенны в резонанс с выходным каскадом передатчика параллельно дросселю Др2 подключают миллиамперметр на ток до 15 ма. Волномер, снабженный антенной в виде отрезка провода длиной 1 м, настроенный на частоту 27,6—28 Мгц, относят от передатчика на такое расстояние, при котором стрелка его прибора находится в середине шкалы. Поворачивая сердечник «удлинительной» катушки L6, добиваются наибольшего отклонения стрелки прибора волномера. Ток, потребляемый транзистором Тз при настройке антенны в резонанс с частотой выходного каскада передатчика, должен увеличиться в 1,5—2 раза.

При настройке антенны может понадобиться подстройка выходного контура передатчика конденсатором С9.

Последним проверяют работу модулятора. При нажатии любой из кнопок в телефонах, включенных параллельно вторичной обмотке Тр1, должен появиться звук. Если звука нет, то проверяют детали и монтаж модулятора. Одной из ошибок в модуляторе может быть неправильная полярность включения диода Д1.

Для проверки частоты модулятора к обмотке II трансформатора Тр1 параллельно телефонам через конденсатор емкостью 0,01 подключают звуковой генератор. Нажав кнопку Кн1 изменяют частоту генератора, подгоняя ее под частоту модулятора. При равенстве частот генератора и модулятора в телефонах слышен звук одного тона.

Частота модулятора при нажатии кнопки Kh1 должна быть близкой к 3 000 гц. Подогнать эту частоту модулятора можно подбором емкости конденсатора С12.

Точно так же настраивают модулятор на другие командные частоты; при нажатии кнопки Кн2- на частоту 3 500 гц, кнопки Кн3 — на частоту 4 500 гц и кнопки Кн4 — на частоту 4 000 гц.

При нажатии любой из кнопок модулятора ток выходного каскада передатчика должен возрастать на 20—30%.

Настроенный передатчик вставляют в металлический корпус.

Приемник

Принципиальная схема приемника радиоуправляемой модели, рассчитанного на совместную работу с описанным передатчиком, показана на рис. 47. Первый каскад приемника является сверхрегенеративным детектором. После детектирования сигнал усиливается трех-каскадным усилителем низкой частоты и подается на вход блока электронных реле дешифратора.

Преимущество сверхрегенератора — его большая чувствительность при малом числе деталей. Так как несущая командного сигнала не стабилизируется кварцем, то незначительный уход частоты передатчика существенно не скажется на работе приемника.

Сверхрегенеративный детектор собран на транзисторе Т1. Обратная положительная связь между коллекторной и базовой цепями осуществляется через конденсатор С3. По высокой частоте нагрузкой каскада служит колебательный контур L1C3. Дроссель Др1 преграждает путь токам высокой частоты в Усилитель низкой частоты.

Резистор R3 является нагрузкой детектора по низкой частоте. Одновременно на нем выделяется напряжение частоты гашения сверхрегенератора, которому путь к усилителю низкой частоты преграждает фильтр C6R4C7.

С выхода усилителя низкой частоты сигнал через конденсатор С12 и резисторы R13 —R16 поступает на электронные реле дешифратора. Если на колебательный контур электронного реле, например на контур L2C13, подать переменное напряжение частотой 4 500 гц, причем колебательный контур настроен на эту частоту, на нем выделится максимальное напряжение этой частоты. При этом между базой и эмиттером транзистора Т5 потечет переменный ток, частично выпрямленный диодом Д1. Создающееся на диоде напряжение со знаком минус подается на базу, а плюс— на эмиттер, обеспечивая необходимое смещение рабочей точки транзистора. Усиленный транзистором переменный ток создает на обмотке реле Р1 падение переменного напряжения, которое через конденсатор С14 подается в колебательный контур. Чем больше напряжение на контуре, тем больше будет Выпрямляемое диодом напряжение, тем отрицательнее напряжение на базе и больше ток через транзистор. Наступает насыщение транзистора. В этот момент напряжение источника питания почти полностью оказывается приложенным к обмотке реле. При этом реле срабатывает, его контакты замыкаются и включают ходовой электродвигатель.

Точно так же работают три других электронных реле на транзи-сторах Т6—Т8, только их контуры настроены на другие командные частоты передатчика: контуры L3C15—на частоту 4 000 гц контур L4C7 на частоту 3500 гц, контур L5C20 —на частоту 3 000 гц. Резисторы R13—R16 устраняют взаимосвязь между контурами реле.

Рис. 47. Схема приемной аппаратуры радиоуправления моделями.

В приемной аппаратуре три исполнительных электродвигателя. При замыкании контактов P1 когда включается электродвигатель ЭД1 модель будет поворачиваться вправо или влево. При замыкании контактов Р2, когда включается электродвигатель ЭД2, модель делает поворот в другую сторону, когда же сработает реле Р4 и его контакты включат два электродвигателя — ЭД1 и ЭД2, модель будет двигаться прямо. Электродвигатель ЭД2 предназначен для выполнения любой другой команды. В модели ракетоносца, где работала эта аппаратура, он применялся для подъема ракет. Выключатели Bki и Вк2 для этого случая являются конечными выключателями, разрывающими цепь питания электродвигателя при полном подъеме или опускании ракеты.

Электролитические конденсаторы С21—С26 снижают уровень помех приемнику, создаваемых работающими электродвигателями.

Электродвигатели питаются от двух соединенных параллельно батарей КБС-Л-0,5.

Детали и конструкция. Детали приемника и электронных реле дешифратора смонтированы на плате размерами 135X80 мм (рис. 48).

Катушка L1 сверхрегенеративного детектора намотана на полистироловом каркасе диаметром 6 мм с алюминиевым сердечником диаметром 4 мм. Катушка содержит 12 витков провода ПЭЛ 0,6, длина намотки 10 мм.

Дроссели Др1 и Др2 имеют одинаковые конструкции: на корпус резистора ВС-0,25 сопротивлением не менее 100 ком намотаны четыре секции из 2,5 м провода ПЭЛ 0,12.

В высокочастотной части приемника следует применить конденсаторы типа КТК или КДК. Контурные катушки электронных реле намотаны проводом ПЭЛ 0,1 на четырехсекционных каркасах с сердечниками СЦР-1 (каркасы фильтров промежуточной частоты радиовещательных приемников). Катушки L2 и L3 содержат по 1 200 витков, L4— 1 400 витков, L5 — 1 500 витков. Электромагнитные реле Р1 Р2, Р4 типа РЭС-10 или, в крайнем случае, типа РСМ, Р3 — типа РЭС-6. Сопротивление обмоток реле должно быть в пределах 400—600 ом. Контактные пружины нужно так отрегулировать, чтобы реле надежно срабатывали при токе 10—14 ма.

Монтаж приемника должен быть механически прочным.

Рис. 48. Расположение деталей приемника и дешифратора на монтажной плате.

Настройку приемника начинают с проверки усилителя низкой частоты. На вход усилителя параллельно конденсатору С7 через резистор сопротивлением 100 ком подают сигнал звукового генератора частотой 1 000 гц, а к выходу усилителя (между плюсовым проводником и положительной обкладкой конденсатора С12) подключают высокоомные телефоны. Изменяя сопротивление резистора R6, добиваются наибольшего неискаженного усиления сигнала генератора. При отключении звукового генератора в телефонах должен прослушиваться характерный для сверхрегенеративного детектора шум, напоминающий звук примуса. Подбирая номинал резистора R1 добиваются максимальной громкости этого шума. Далее по сигналу генератора высокой частоты контур L1C3 приемника настраивают на частоту 27,8 Мгц сердечником катушки L1. Если частота контура значительно отличается от сигнала генератора, то сжимают или, наоборот, раздвигают витки катушки, добиваясь, чтобы настройка контура на частоту 27,8 Мгц была при среднем положении сердечника в катушке L1.

Если сверхрегенератор не работает, то надо заменить транзистор Т1 — не все высокочастотные транзисторы хорошо работают в режиме сверхрегенеративного детектирования.

Окончательная настройка приемника производится при совместной работе с передатчиком. Включив передатчик, нажимают кнопку Кн4 (частота модуляции 4 500 гц). Приемник, не подключая к нему антенну, располагают на расстоянии 20—80 см от передатчика и сердечником катушки L1 настраивают его на несущую частоту передатчика. При точной настройке контура L1C3 на частоту передатчика сверхрегенеративный шум должен исчезнуть, а в телефонах, подключенных к выходу усилителя низкой частоты, должен громко прослушиваться тон модуляции. При этом на резисторе R10 должно развиваться переменное напряжение с частотой модуляции передатчика в пределах 1—4 в.

Теперь последовательно с обмоткой реле Р1 надо включить миллиамперметр на ток 50 ма и подбором конденсатора C13 контура L2С13 добиться наибольшего тока через реле Р1. Затем изменяют сопротивление резистора R1 (вместо него полезно поставить переменный резистор на 50 ком), устанавливают ток через реле Р1 10—12 ма — ток четкого срабатывания реле. Нужно добиться, чтобы с увеличением сопротивления резистора R1 ток через реле резко уменьшался, а при уменьшении возрастал бы незначительно, а всякое изменение положения сердечника в катушке L2 вызывало уменьшение тока в коллекторной цепи транзистора Т5.

Точно так же настраивают колебательные контуры трех других электронных реле. Может оказаться, Что только сердечниками катушек не удается настроить контуры в резонанс с частотами модуляции передатчика. В таких случаях изменяют емкости конденсаторов, входящих в колебательные контуры, на 2 000—5 000 пф.

Хорошо налаженный приемник без подключения к нему антенны должен принимать сигналы передатчика на расстоянии до 50 м от него.

В зависимости от размеров модели устанавливаемые на ней приемник и блок электронных реле дешифратора могут быть смонтированы на отдельных платах. Антенной приемника может служить любой провод длиной около 1 м с хорошим изоляционным покрытием.

Эта система радиоуправления предназначена для выполнения одной команды, в то-же время её модно расширить до четырёх-пяти команд. К её достоинствам можно отнести минимальные габариты платы приёмника, и сведение к минимуму числа его высокочастотных катушек. Систему можно использовать в каких-либо пусковых устройствах, в системе охранной сигнализации, персонального вызова, или дистанционного управления моделями и приборами.

Во всех этих случаях когда нудно дистанционное управление с расстояния до 500-500м в городе, и до 5000м в открытом пространстве или над водой.

Технические характеристики:

1. Рабочая частота канала............. 27,12 Мгц.
2. Мощность передатчика.............. 600 мВт.
3. Напряжение питания передатчика......... 9 В.
4. Ток потребления передатчиком............. 0,3 А.
5. Чувствительность приёмника............... 2мкв.
6. Селективность при расстройке на 10 кгц......... 36 дб.
7. Напряжение питания приемника........... 3,3-5В.
8. Ток потребления приёмника в покое............... 12 мА.
9. Ток потребления приёмником при срабатывании - 60 мА, и зависит от типа используемого реле.

Принципиальная схема и монтажная приёмного тракта изображена на рисунке 1. Радиочастотный сигнал от антенны через переходной конденсатор С1 поступает в входной контур L1 С2 настроенный на частоту 27,12 Мгц. С выхода этого контура сигнал поступает на высокочастотный усилитель на полевом транзисторе VT1. Диод VD1 служит для ограничении исходного сигнала при не большом расстоянии между антеннами приёмника и передатчика.

Этот транзистор согласует несимметричный высокоомный выход контура с симметричным низкоомным входом микросхемы DA1, которая выполняет функции преобразователя частоты. Частота гетеродина определяется частотой резонанса резонатора Q1. В данном случае частота гетеродина 26,655 мгц. Сигнал промежуточной частоты 465 кгц выделяется на нагрузке преобразователя резисторе R3.

С этого резистора сигнал ПЧ через пьезокерамический фильтр Q2 (он определяет всю селективность) поступает на микросхему DA2, на которой выполнен усилитель промежуточной частоты, амплитудный детектор, система АРУ и усилитель низкой частоты. С выхода детектора микросхемы (выгод 8) низкочастотное напряжение амплитудой 50-100 мВ поступает через подстроечный резистор R8 на вход УЗЧ, который усиливает этот сигнал до 1,5 - 2 В.

Усиленный низкочастотный сигнал с вывода 12 микросхемы, через С1В поступает на каскад на транзисторе VT2. Это рефлексный ключевой каскад. Он усиливает переменное напряжение, которое с его коллектора поступает на колебательный контур L2 С19, настроенный на 1250 гц.

Если входное напряжение имеет эту частоту контур входит в резонанс и на катоде диода VD2 появляется постоянное напряжение, которое приводит к открыванию транзистора. Его коллекторный ток увеличивается и как только достигает значения срабатывания реле XS оно срабатывает и замыкает или размыкает своими контактами цепь устройства, подлежащего управлению.

Конструктивно приёмник собран на малогабаритной печатной плате, схема которой изображена в натуральную величину. Нужно использовать малогабаритные детали. Катушка L1 наматывается на цилиндрическом ферритовом стержне диаметром 2,8 мм и длиной 12 мм. Она содержит 14 витков провода ПЭВ-0,31. Наматывают её так, чтобы сердечник мог с некоторым трением двигаться в ней. Пьезокерамический фильтр тоже малогабаритный - ФГЛП061-02 на 465 кгц. Можно использовать и другой фильтр на эту частоту важно, чтобы габариты позволяли.

Реле - РЭС55 - герконовое, паспорт РС4.569.603. Это реле допускает ток коммутации до 0,25А. Можно использовать другое малогабаритное реле, например РЭС43 или РЭС44. Катушка низкочастотного контура L2 намотана на ферритовом кольце К7-4-2 из феррита 400НН, она содержит 350 витков провода ПЭВ-0,06.

Настройка ВЧ части приёмника сводится к настройке входного контура на частоту канала. Настройка каскада на VT2 сводится к установке режима таким образом, чтобы при выключенном модуляторе передатчика контакты реле находились в обесточенном положении. Режим устанавливают подбором R9, в некоторых случаях его можно исключить. R8 подстраивают таким образом, что-бы была максимальная чувствительность и при этом реле не срабатывало от шумов.

Принципиальная схема передатчика изображена на рисунке 2. Задающий генератор передатчика выполнен на VT1 с кварцевой стабилизацией частоты. Кварцевый резонатор Q1 выбран на частоту несущей - 27,12 Мгц. Напряжение этой частоты выделяется в дросселе L1 и через конденсатор С8 поступает на усилитель мощности на транзисторе VT2. Усиленное напряжение ВЧ выделяется на дросселе L3.

Для согласования с антенной используется двойной "51" образный контур на элементах L4, L5, С12, С13, С14 и С15. Он согласует по входному сопротивлению антенну и выход передатчика, и отфильтровывает гармоник несущей частоты. Катушка L6 используется для увеличения эквивалентной длины антенны и следовательно к увеличению отдаваемой энергии.

Для модуляции используется ключевой каскад на транзисторе VT3. При подаче на его базу отрицательного относительно эмиттера напряжения он открывается и подаёт питание на усилитель мощности.

Прямоугольные импульсы для управления модулятором вырабатывает мультивибратор на микросхеме D1. Частота генерации определяется конденсатором С3 и резисторами R1 и R2. Элемент D1.3 выполняет роль формирователя импульсов, а D1.4 выключателя модуляции.

В рабочем режиме при отсутствии команды питание поступает на передатчик (S2 замкнут). Тумблер S1 в этом случае замкнут, и на выходе элемента D1.4 устанавливается напряжение близкое к нулю (относительно минуса питания). Это напряжение является отрицательным по отношению к эмиттеру VT3. Оно через R5 поступает на базу этого транзистора и открывает его.

В результате в режиме отсутствия команды передатчик излучает не модулированный сигнал. Это нужно для того, чтобы забить высокочастотный тракт приёмника и исключить влияние на его работу электрических помех и атмосферных шумов. Для того, чтобы послать команду нужно разомкнуть тумблер S1. Тогда элемент D1.2 откроется и пропустит через себя прямоугольные импульсы от мультивибратора.

Передатчик будет излучать модулированный сигнал, реле приёмника сработает. Если нет опасности от помех и расстояние между приёмником и передатчиком небольшое можно исключить постоянное излучение, разомкнув S1 и посылать команды только замыкая S2. Такой режим нужно использовать при работе аппаратуры в охранном комплексе, так как занимать частоту на столь длительное время нельзя.

Передатчик смонтирован на печатной плате, рисунок которой в натуральную величину изображен на рисунке 2. В передатчике делать минимальные габариты платы не обязательно и можно использовать не такие малогабаритные детали как в приёмнике.

Микросхему К176ЛА7 можно заменить на K561ЛA7 или при изменении разводки платы на К564ЛА7. Транзистор VT1 можно использовать КТ608 с любой буквой, VT2 - КТ606, КТ907. VТ3 - KT816 или ГТ403.

Катушки передатчика L4 и L5 бескаркасные, они имеют диаметр 7 мм и длину 10 мм, L4 содержит 15 витков ПЭВ-0,61, L6 20 витков ПЭВ-0,56. Катушка L6 выполнена так-же как и катушка входного контура приёмника, она имеет ферритовый сердечник. Она содержит 18 витков ПЭВ-0,2. Дроссели L1, L2 и L3 наматываются на постоянных резисторах МЛТ-0,5 сопротивлением не менее 100-с проводом ПЭВ-0,16, по 40 витков. В качестве антенны используется штырь длиной 75 см.

Настройка

Передатчик настраивают при помощи волномера с индикатором напряженности поля или высокочастотным осциллографом (С1-65) с катушкой на входе. В обеих случаях тумблер S1 замыкают и измеряют напряжение на коллекторе VT3, оно должно быть близко к напряжению питании.

Затем с подключенной рабочей антенной путём сжатия и раздвигании витков L4 и L5, подстройкой С13 и изменяем индуктивности перемещением сердечника L6 добиваются максимального неискаженного синусоидального сигнала основной частоты (по ошибке можно настроиться на гармонику), регистрируемого волномером или осциллографом с расстояния около 1 метра от антенны.

Теперь можно включить модуляцию тумблером S1. Теперь на экране осциллографа должен быть виден модулированный сигнал если уменьшить период развёртки осциллографа на его экране появятся сплошные прямоугольники, они не должны иметь искажений и выбросов. Сопряжение низкочастотных настроек приемника и передатчика производится в передатчике подстройкой резистора по максимальной дальности срабатывания.

Если нужно сделать несколько команд нужно сделать переключатель, который будет коммутировать несколько резисторов R2. В приёмнике нужно сделать несколько каскадов, аналогичных каскаду на VT2, которые будут отличаться только емкостью С19, и и подключить их к точке "А" (рис.1). Рекомендуемые емкости С19 для четырёх команд - 0,15 мкф, 0,1 мкф, 0,068 мкф и 0,033 мкф.

После настройки все катушки передатчика и входную катушку приёмника нужно зафиксировать эпоксидной смолой.

Мне досталась парочка вот таких:

Радио брелоков вестимых из Китая, на частоту 433.92 МГц, вот на основе их и сделано радиоуправление.

Вскрытие брелоков установило, что основой их служит микросхема кодера LX2240B . Питание осуществляется от двух литиевых батареек CR2016.


Описание этой микросхемы не сложно найти в сети. Микросхема содержит всего 4 линии данных, что позволяет подключить к ней 15 кнопок. Коды кнопок от 0x01 до 0x0F.

Формат посылки следующий:

ISN – это идентификационный номер, для которого отводиться 20 бит. Данная микросхема может содержать 1048576 комбинаций кода. Так что, совпадения маловероятны.

Synchronization code – служит для разделения пакетов данных.

Общая длинна пакета 24 бита.

Кодирование одного бита выглядит так:

Это кодирование единицы.

Это кодирование нуля.

Вот так выглядит бит синхронизации.

Единица кодируется длинным импульсом и короткой паузой, а ноль наоборот. Длительности всех импульсов и пауз между ними зависит от частотозадающих цепей микросхемы.

Сама посылка выглядит так:

Измеряя длительности импульсов(длинный импульс – 1, короткий - 0) можно декодировать сигнал.

Теперь о декодере, который построен на PIC16F886:

Приемник RR8 – RR10, на соответсвующую частоту. LED3, LED4, LED5, LED6 – индикация состояния реле. LED1 – индикация приема посылки от пульта. LED2 – запись идентификационного кода пульта. Если необходимо местное управление, то к разъему JP1 можно подключить 4 тактовые кнопки без фиксации. SG1 – звуковая сигнализация(бузер с встроеным генератором). Для большей гибкости все контакты реле выведены на разъемы, так что можно нагрузку подключать как угодно.

Прием и декодирование посылки ведется с помощью модуля ШИМ(CCP1) микроконтроллера, настроенного в режим захвата. Для большей помехозащищенности прием ведется по детектированию импульсов и по детектированию пауз между ними, таким образом в конце приема мы получаем две посылки, одну прямую, другую инверсную. Сравнив которые решаем принят сигнал верно или нет. В начале каждого захвата TMR1 работающий совместно с модулем CCP1 сбрасываем не давая ему переполнится при приеме данных. Если произойдет прерывание от TMR1, то это будет свидетельствовать о окончании передачи данных или о приеме помехи, или о потере сигнала. Код снабжен достаточно подробными коментариями, так что здесь не привожу куски кода.

Переключатель S1 – задает режим работы устройства.

S1-5 – вкл./выкл. Звуковой сигнализации.

S1-6 – запись. Добавление/удаление в память кода ISN пульта управления, (максимум 4 шт.).

S1-1, S1-2, S1-3, S1-4 – режим работы реле, с фиксацией или без фиксации(каждого канала не зависимо). В режиме записи номер ячейки памяти.

Добавление пульта в память:

S1-1, S1-2, S1-3, S1-4 – поставить в состояние выкл. S1-6 – поставить в состояние вкл., при этом загориться LED2. Переключателями S1-1, S1-2, S1-3, S1-4 – выбираем ячейку памяти в которую будем записывать. При этом LED2 количествами миганий будет указывать на номер выбраной ячейки. Нажимаем на любую кнопку пульта, короткий звуковой сигнал и свечение LED2 укажут на завершение записи. Выбираем другую ячейку и повторяем действия.

Удаление пульта:

S1-1, S1-2, S1-3, S1-4 – поставить в состояние выкл. S1-6 – поставить в состояние вкл., при этом загориться LED2. Переключателями S1-1, S1-2, S1-3, S1-4 – выбираем ячейку памяти которую необходимо очистить. При этом LED2 количествами миганий будет указывать на номер выбраной ячейки. Нажимаем на любую кнопку пульта который уже занесен в память, два коротких звуковых сигнала и свечение LED2 укажут на завершение очистки. При необходимости, выбираем другую ячейку и повторяем действия.

Ну и готовое устройство выглядит так:

Дальность действия в условиях прямой видимости сотавляет 50…70 метров.



Данное устройство предназначено для управления 4 различными нагрузками (например управление гаражными воротами, эл. освещением и прочее). Допускается одновременное нажатие кнопок в любой комбинации (для режима без фиксации команды). Приемник имеет 2 режима работы: – 1 режим без фиксации команды (перемычка на приемнике убрана) – команды выполняются только в момент удержания соответствующей кнопки (кнопок). – 2 режим с фиксацией команды (установлена перемычка на приемник) – команда выполняется после нажатия кнопки, повторное нажатие кнопки отключает команду.

Передатчик состоит из кодера на микроконтроллере, и радиомодуля для передачи данных по радиоканалу. Модуляция – ШИМ. В передатчик заложен алгоритм помехоустойчивой передачи данных, для защиты от ложных срабатываний. Потребление тока в режиме покоя составляет 0,1мкА в режиме сна, и 11мА во время передачи (от источника напряжения 3В). 0,3мкА в режиме сна, и 15мА во время передачи (от источника напряжения 6В). Для управления на небольшой дистанции достаточно одной литиевой батареи. Для более дальней связи используются 2 литиевых батареи. Плата передатчика – 2-х сторонняя. Обратная сторона используется в качестве экрана. Фольга только удалена под катушкой L2.

Особенности передатчика:

– для сверхнизкого потребления тока в режиме сна в контроллере пришлось отключить одну важную функцию (с этой функцией потребление тока составило бы 60 мкА, что не есть хорошо), поэтому в некоторых ситуациях контроллер при подключении батареи может зависнуть. Для вывода его из этого состояния нужно извлечь батарею, нажать на кнопку SB4 (для разряда конденсаторов), и снова установить батарею до успешного старта контроллера. В нормальном рабочем режиме с установленной батареей зависаний не будет (пока батарея не разрядится).

– если при подключении батареи удерживать кнопку SB1, то передатчик перейдет в режим передачи сигнала 100 % амплитудной модуляцией частотой 1кГц. Это сделано для тех кто самостоятельно будет собирать и настраивать сверхрегенеративный приемник на нужную частоту (по сигналу передатчика удобно производить данную настройку).

– если при подключении батареи удерживать кнопку SB2, то передатчик перейдет в режим постоянной передачи кодовой посылки 0101 (2 светодиода горят, 2 потушены). Этот режим удобен для тех, кто будет тестировать дальность работы устройств.

Приемник состоит из декодера на микроконтроллере, и готового приемного радиомодуля (радиомодуль не должен инвертировать сигнал передатчика). Приемник команд особенностей не имеет. К выходу микроконтроллера можно подключить мощные полевые транзисторы для управления всеразличными нагрузками или реле.

А теперь о дальности работы. При питании передатчика от источника напряжением 6В и нахождении передатчика на 7 этаже мне удавалось передавать команды на расстояние до 1км. Причем внутри дома сигнал передатчика пробивал насквозь 7 этажей (до 1 этажа), прием даже велся в металлическом лифте на пути следования с 7 до 1 этажа. При нахождении передатчика на уровне 1,5 метра от земли сигнал передавался до 300 метров при прямой видимости. В качестве антенн были использованы куски провода по 17см.

Прошивки бесплатны, и не имеют никаких ограничений. Кодер и декодер имеют индивидуальный код (могут быть перестроены на сотни миллиардов различных комбинаций). При программировании контроллеров не забываем о калибровочных константах http://pro-radio.ru/controllers/3131-2/ (у кого PICkit – могут о этом не беспокоиться, программатор сам все сделает).

Если применить готовые радиомодули приемника и передатчика, например эти , то сборка данного устройства значительно упростится.

Самые любимые и вместе с тем трудновыполнимые электронные игрушки для юных радиолюбителей.

Управление моделями по радио

Статья представляет собой цикл публикаций по конструированию и работе аппаратуры управления по радио электромеханическими игрушками и моделями.

Выбор модели и системы управления

Существуют несколько систем радиосвязи, которые можно применить для телеуправления. Не все мы будем рассматривать, да и не все нам подойдут. Сначала необходимо определиться с будущей системой радиоуправления. Да и с выбором конкретной модели электромеханической игрушки желательно определиться сразу же, чтобы потом не мучиться с проблемой размещения электроники во внутренности автомодели.

Передатчик

Редкое исключение из правила, когда передатчик системы связи проще приемника. Здесь это так, поэтому начнем знакомство телеуправления с изготовления передатчика, который на поверку оказывается достаточно универсальным и подходит для различных моделей управления.

Однокомандное приемное устройство

Вот и настала очередь приемника для системы радиоуправления моделями. В простейшем случае это однокомандное устройство, функции которого вполне достаточно, чтобы модель двигалась и поворачивала, хоть только и в одну сторону.

Двухканальное четырехкомандное приемное устройство

Более сложный вариант приемного устройства системы телеуправления моделями по радио. Название говорит само за себя: аппаратура позволяет игрушке выполнять четыре команды, обеспечивая весь спектр движения по плоскости.

Выбор модели дискретно-пропорционального управления

Более сложная система телеуправления моделями — дискретно-пропорциональная, которая позволяет кардинально улучшить управляемость игрушкой. Но и проблема выбора модели тоже усложняется: она должна быть совместима с принципом системы радиоуправления.

Передатчик для управления летающими моделями

Управление летающими моделями (самолетами) очень увлекательное занятие для детворы. До сих пор где-нибудь проводятся соревнования по боям на кордовых моделях. А вот модель, оборудованная радиосистемой телеуправления — вообще предел мечтаний любого мальчишки. В предлагаемой статье рассказывается о том, как из дискретно-пропорциональной аппаратуры сделать двухканальную систему управления летающими моделями.