Для чего нужны разрядники на подстанции. Ограничитель перенапряжения: принципы подбора устройства защиты от скачков напряжения

Разрядник – это аппарат, предназначенный для защиты электроустановки от атмосферных перенапряжений. Перенапряжения в электрических установках могут вызывать пробой изоляции с последующим коротким замыканием и выходом высоковольтной аппаратуры из строя.

Фактически разрядник это самое слабое место сети по изоляции, через которое происходит разряд на землю при перенапряжениях, после чего восстанавливается нормальный режим работы сети. Вместе с тем, разрядник должен работать так, чтобы после пробоя его разрядного промежутка не произошло короткого замыкания в цепи.

ПУЭ требует установки разрядников для защиты воздушных линий с воздушными вводами.

Воздушные линии защищают от перенапряжений трубчатыми разрядниками.

Разрядник типа РТ представляет собой трубку из оргстекла или фибры, внутри которой проходит металлический стержень с воздушным искровым промежутком. При перенапряжении, превышающем установленный уровень, искровой промежуток пробивается и образуется электрическая дуга. В результате высокой температуры из стенок трубки выделяются газы, вырывающиеся под большим давлением наружу и способствующие деионизации воздушного пространства в разряднике и гашению дуги. Для правильного выбора разрядников нужно иметь данные о токах короткого замыкания в местах их установки, так как при малой величине тока короткого замыкания количество выделяемых газов может оказаться недостаточным для быстрого гашения электрической дуги, следствием чего станет отключение сети максимальной защитой. И, наоборот, при величине тока короткого замыкания, превышающего максимально допустимый, для данного типа устройства, в результате бурного газообразования и чрезмерного повышения давления устройство может быть разрушено.

Поэтому в каталогах приводят минимальные и максимальные величины тока короткого замыкания для каждого типа трубчатого разрядника.

Например, — это разрядник трубчатый на напряжение 10 кВ для диапазона токов короткого замыкания от 0,5 до 7 кА.

Вилитовые разрядники (рисунок ниже) предназначаются для защиты от перенапряжений аппаратуры электрических подстанций и станций.

В этих аппаратах, называемых еще вентильными, то есть запирающими, используется свойство керамического материала вилита, из которого они изготовлены, снижать свое сопротивление при превышении напряжения сверх некоторого предела. Таким образом, при перенапряжении разрядник пробивается, а по мере снижения потенциала его диэлектрическая прочность восстанавливается, и протекание электрического тока на землю прекращается.

Сейчас в наше время разрядники распространены повсеместно. Поэтому вопросы о разрядниках стали актуальными. Но на большинстве сайтов информация очень сложная и непонятная. Эта статья очень проста в понимании. Из неё вы узнаете: что такое разрядник, принцип работы, устройство и виды разрядников.

В современной электронике довольно часто возникают сильные всплески напряжения. Перенапряжения могут сильно повлиять на электрические устройства, работающие при нормальных условиях, даже если они кратковременны. Причиной этого может стать плохая коммутация электрических цепей, слабая изоляция, резонансные помехи. Причины бывают, как и внутренние, так и внешние. Атмосферные разряды гроз могут стать внешней причиной перенапряжения.

Для предохранения от перенапряжения раньше применялись только громоотводы. Сейчас с высоким развитием современной электроники стали применяться такие замечательные устройства, как разрядники.

Что такое разрядник?

Разрядник- это устройство, которое защищает современную электронику от высоких скачков напряжения.

С высоким развитием промышленности удалось сделать разрядники экономичными и эффективными для использования в своих целях. Сейчас в наше время использование надежной изоляции весьма дорого и неэффективно, удобнее всего, конечно же, использовать разрядники.

В узком смысле разрядники являются защитными элементами электрических цепей, без которых часто бы портились электрические приборы, изоляция ЛЭП кабелей или проводов.

Устройство разрядника

Разрядник состоит из двух основных частей: электродов и дугогасительного устройства.

Устройство разрядника в зависимости от его вида бывает разным.

Разрядник имеет прочный герметичный корпус, который предохраняет его от внешних механических повреждений. Промежуток между электродами называется искровым промежутком. Один из электродов присоединяется к защищаемому элементу электрической цепи, а другой обязательно заземляется. Без заземления разрядник бесполезен.

Важно то, что дугогасительное устройство несёт большее значение в работе разрядника, в ином случае разрядник не сможет предотвратить от фазного пробоя. Фазный пробой повлечет за собой короткое замыкание (КЗ).

На рисунке 2 показано устройство трубчатого разрядника. Он имеет прочный корпус 1, который способен выдержать большую температуру. Фланец 3, к нему присоединяется защищаемый участок электрической цепи, сам фланец является электродом разрядника. Электрод 2 подключается к заземлению. Он бывает двух видов: с регулировкой и без неё. Первый может менять размер искрового промежутка, тем самым изменяет величину пробивного напряжения.

Рис 2. Устройство трубчатого разрядника

Пробивное напряжение – это одна из главных характеристик разрядника, которая показывает напряжение, при котором в разряднике, между его электродами возникает искры, то есть разрядник пробивается. Полярность подключение к электродам 2 и 3 не имеет существенной разницы, если это разрядник переменной сети.

Дугогасительное устройство в данном случае представляет из себя корпус, который выделяет газ. Современные методы производства позволяют создавать разрядники различных характеристик.

Принцип работы разрядника

Принцип работы разрядника довольно прост, как и его устройство. При возникновение перенапряжения на электродах разрядника значительно возрастает напряжение. Если это напряжение станет больше напряжение пробоя, которое прописано в характеристике устройства, то возникнет пробой.

Между электродами проскочит искра. При этом снизится напряжение на его электродах, а в искровом промежутке ионизируется воздух. Разрядник станет пробиваться фазным напряжением и возникнет короткое замыкание.

Чтобы этого не произошло, в разряднике присутствует дугогасительное устройство. В зависимости от вида разрядника имеются различные виды дугогасительных устройств. Все разрядники подразделяются на несколько видов.

Ниже представлены основные виды разрядников.

Виды разрядников:

-Трубчатый (воздушный);
-Газовый;
-Вентильный:
-Магнитовентильный разрядник (РВМГ);
-Ограничитель перенапряжения нелинейный (ОПН);
-Трубчатые разрядники (воздушный)

Трубчатый разрядник

Трубчатый разрядник представляет собой трубку из прочного материала. Сам материал – это различные полимеры. Самый распространённый из них – это полихлорвинил. Полихлорвинил способен вынести температуру, пригодную для данного типа разрядников.

В трубку помещены два электрода (рис 1.). Один присоединяется к защищаемому элементу, а другой заземляется. Принцип работы трубчатого разрядника довольно прост.

При напряжении пробоя образуется искра, которая ионизирует воздух. Воздух сильно нагревается, при этом идет массовое выделение газов.

Интенсивная газовая генерация гасит дугу фазного напряжения. Такое дугогасительное устройство называется продольным дутьём. Для выхода газов наружу, в разряднике имеется отверстие.

Газовый разрядник отличается от воздушного только тем, что его корпус наполняют инертным газом (аргоном или неоном). В отличие от воздушного разрядника, в газовом разряднике дугу, образованную фазным напряжением, гасят инертные газы.

В современной электронике трубчатые разрядники распространены повсеместно. Они просты по устройству и надежны. Пробивное напряжение воздушных разрядников невысокое, поэтому такие разрядники не применяются в более высоковольтной аппаратуре.

Более высокое пробивное напряжение у газовых разрядников. Они гораздо эффективнее, так как газы не вступают в реакции, тем самым продлевают жизнь электродам.

Рис 3. Трубчатый разрядник

Вентильные разрядники.

Вентильный разрядник состоит из набора многократно повторяющихся искровых промежутков и нелинейных сопротивлений.

Принцип работы вентильного разрядника немного другой, чем у трубчатых разрядников. Во время работы электроды искрового промежутка снимают перенапряжения, а нелинейные сопротивления(резисторы) гасят дугу фазного напряжения.

Резисторы состоят из набора вилитовых дисков. Вилит – это запеченная смесь карбида кальция с жидким стеклом. По сравнению с трубчатыми и газовыми разрядниками, вентильные разрядники имеют более высокое напряжение пробоя.

Рис 4. Вентильный разрядник.

Магнитовентильный разрядник (РВМГ)

В отличие от устройства вентильного разрядника, в устройство магнитовентильного разрядника входит набор кольцевых магнитов.

Принцип работы магнитовентильного разрядника немного другой. При пробое фазным напряжением образуются дуга. Под воздействием магнитного поля магнитов дуга начинает вращаться, тем самым дуга гасится.

Рис 5. Магнитовентильный разрядник (РВМГ).

Ограничители перенапряжения нелинейные (ОПН).

Ограничители перенапряжения нелинейные не имеют электродов. Они состоят из набора нелинейных полупроводниковых сопротивлений – варисторов.

Варистор – это полупроводниковый резистор, который меняет сопротивление в зависимости от приложенного к нему напряжения. При возрастании напряжения, сопротивление варистора падает, поэтому он пропускает через себя электрический ток, тем самым снимая напряжение с защищаемого участка электрической цепи.

Варисторы в процессе работы очень сильно нагреваются, поэтому корпуса нелинейных ограничителей перенапряжения делают теплопроводными. Это позволяет отводить тепло.

Сама конструкция ОПН очень проста, поэтому это упрощает методы производства. Также у ОПН неплохие технические характеристики. Количество варисторов можно варьировать в зависимости от нужного пробивного напряжения нелинейного ограничителя перенапряжения.

Рис 6.Ограничитель перенапряжения нелинейный (ОПН).

В заключение хочу скачать, что помимо высоковольтных разрядников, в современной электронике появились низковольтные разрядники.

Это позволяет радиолюбителем широко использовать такие замечательные устройства.

Разрядники: назначение, конструкция, принцип действия. Вентильные и трубчатые разрядники. Нелинейные ограничители перенапряжения (ОПН): назначение, конструкция, принцип действия. Условия выбора

Коммуникация, связь, радиоэлектроника и цифровые приборы

Нелинейные ограничители перенапряжения ОПН: назначение конструкция принцип действия. В результате пробоя в трубке возникает интенсивная газогенерация и через выхлопное отверстие образуется продольное дутье достаточное для погашения дуги. ОПН Ограничитель перенапряжения нелинейный ОПН это разрядник без искровых промежутков. Активная часть ОПН состоит из последовательного набора варисторов.

28. Разрядники: назначение, конструкция, принцип действия. Вентильные и трубчатые разрядники. Нелинейные ограничители перенапряжения (ОПН): назначение, конструкция, принцип действия. Условия выбора.

Разря́дник — электрический аппарат , предназначенный для ограничения перенапряжений в электротехнических установках и электрических сетях .

В электрических сетях часто возникают импульсные всплески напряжения , вызванные коммутациями электроаппаратов, атмосферными разрядами или иными причинами. Несмотря на кратковременность такого перенапряжения, его может быть достаточно для пробоя изоляции и, как следствие, короткого замыкания , приводящего к разрушительным последствиям. Для того, чтобы устранить вероятность короткого замыкания, можно применять более надежную изоляцию, но это приводит к значительному увеличению стоимости оборудования. В связи с этим в электрических сетях целесообразно применять разрядники.

Разрядник состоит из двух электродов и дугогасительного устройства.

Электроды

Один из электродов крепится на защищаемой цепи, второй электрод заземляется . Пространство между электродами называется искровым промежутком . При определенном значении напряжения между двумя электродами искровой промежуток пробивается , снимая тем самым перенапряжение с защищаемого участка цепи. Одно из основных требований, предъявляемых к разряднику — гарантированная электрическая прочность при промышленной частоте (разрядник не должен пробиваться в нормальном режиме работы сети).

Дугогасительное устройство

После пробоя импульсом искровой промежуток достаточно ионизирован , чтобы пробиться фазным напряжением нормального режима, в связи с чем возникает короткое замыкание и, как следствие, срабатывание устройств РЗиА , защищающих данный участок. Задача дугогасительного устройства — устранить это замыкание в наиболее короткие сроки до срабатывания устройств защиты.

Виды разрядников

Трубчатый разрядник

Трубчатый разрядник представляет собой дугогасительную трубку из полихлорвинила , с разных концов которой закреплены электроды. Один электрод заземляется, а второй располагается на небольшом расстоянии от защищаемого участка (расстояние регулируется в зависимости от напряжения защищаемого участка). При возникновении перенапряжения пробиваются оба промежутка: между разрядником и защищаемым участком и между двумя электродами. В результате пробоя в трубке возникает интенсивная газогенерация, и через выхлопное отверстие образуется продольное дутье, достаточное для погашения дуги.

Вентильный разрядник

Вентильный разрядник состоит из двух основных компонентов: многократного искрового промежутка (состоящего из нескольких однократных) и рабочего резистора (состоящего из последовательного набора вилитовых дисков). Многократный искровой промежуток последовательно соединен с рабочим резистором . В связи с тем, что вилит меняет характеристики при увлажнении, рабочий резистор герметично закрывается от внешней среды. Во время перенапряжения многократный искровой промежуток пробивается, задача рабочего резистора — снизить значение сопровождающего тока до величины, которая сможет быть успешно погашена искровыми промежутками. Вилит обладает особенным свойством — его сопротивление нелинейно — оно падает с увеличением значения силы тока. Это свойство позволяет пропустить больший ток при меньшем падении напряжения. Благодаря этому свойству вентильные разрядники и получили свое название. Среди прочих преимуществ вентильных разрядников следует отметить бесшумность срабатывания и отсутствие выбросов газа или пламени.

Магнитовентильный разрядник (РВМГ)

РВМГ состоит из нескольких последовательных блоков с магнитным искровым промежутком и соответствующего числа вилитовых дисков. Каждый блок магнитных искровых промежутков представляет собой поочередное соединение единичных искровых промежутков и постоянных магнитов , заключенное в фарфоровый цилиндр.

При пробое в единичных искровых промежутках возникает дуга, которая за счет действия магнитного поля , создаваемого кольцевым магнитом, начинает вращаться с большой скоростью, что обеспечивает более быстрое, по сравнению с вентильными разрядниками, дугогашение.

ОПН

Ограничитель перенапряжения нелинейный (ОПН) — это разрядник без искровых промежутков. Активная часть ОПН состоит из последовательного набора варисторов . Принцип действия ОПН основан на том, что проводимость варисторов нелинейно зависит от приложенного напряжения. В нормальном режиме ОПН не пропускает ток, но как только на участке сети возникает перенапряжение, сопротивление ОПН резко снижается, чем и обуславливается эффект защиты от перенапряжения. После прохождения разряда через ОПН, его сопротивление опять возрастает. Переход из «закрытого» в «открытое» состояния занимает меньше 1 наносекунды (в отличие от разрядников с искровыми промежутками, у которых это время равняется нескольким микросекундам). Кроме быстроты срабатывания ОПН обладает еще рядом преимуществ. Одним из них является стабильность характеристики варисторов после неоднократного срабатывания вплоть до окончания указанного времени эксплуатации, что, кроме прочего, устраняет необходимость в эксплуатационном обслуживании.

Обозначение

На электрических принципиальных схемах в России разрядники обозначаются согласно ГОСТ 2.727—68.
1. Общее обозначение разрядника
2. Разрядник трубчатый
3. Разрядник вентильный и магнитовентильный
4. ОПН


А также другие работы, которые могут Вас заинтересовать

17121. Розробка програм з використанням класів 112 KB
Лабораторна робота № 30 Тема: Розробка програм з використанням класів Ціль роботи: вивчити синтаксичні конструкції для оголошення визначення і використання класів. Розібратися з особливостями використання класів у мові С. Обладнання: ПКПО Borland C Теоретичні відо...
17122. Використання конструкторів і деструкторів 58 KB
Лабораторна робота № 31 Тема: Використання конструкторів і деструкторів Ціль роботи: вивчити і навчитися використовувати механізм роботи з конструкторами і деструкторами. Обладнання: ПКПО Borland C Теоретичні відомості Конструктори і деструктори Існує кільк
17123. Використання спадкування для створення ієрархії класів 80.5 KB
Лабораторна робота № 32 Тема: Використання спадкування для створення ієрархії класів Ціль роботи: одержати навички у використанні спадкування для створення похідних класів при простому спадкуванні. Обладнання: ПКПО Borland C Теоретичні відомості При оголошенні п...
17124. Використання віртуальних і покажчиків для роботи з об"єктами класів 51.5 KB
Лабораторна робота № 33 Тема: Використання віртуальних і покажчиків для роботи з об"єктами класів Ціль роботи: вивчити і навчитися використовувати віртуальні функції в мові С. Обладнання: ПКПО Borland C Теоретичні відомості Віртуальні функціїчлени з"являються в к...
17125. Задачі курсу. Історичний огляд розвитку обчислювальної техніки. Операційна система (ОС) та її функції. Структура ОС 72 KB
Лекція №1 Тема: Задачі курсу. Історичний огляд розвитку обчислювальної техніки. Операційна система ОС та її функції. Структура ОС. План Мета і задачі курсу. Призначення операційних систем. Функції операційних систем. Поняття операційного середовища. ...
17126. Структура ОС MS – DOS. Основні команди MS – DOS 162.5 KB
Лекція №2 Тема: Структура ОС MS DOS. Основні команди MS DOS. План Історія й архітектура. Керування програмами. Керування пам"яттю. Введеннявиведення і файлова система. Структура MS DOS. Історія й архітектура ОС MS DOS була розроблена фірмою Microso...
17127. Призначення, створення і виконання командного файлу в ОС Windows та Ms-Dos 45.5 KB
Лекція №3 Тема: Призначення створення і виконання командного файлу в ОС Windows та MsDos. План Призначення командних файлів. Приклади застосування. Формальні параметри. Командні файли в ОС Windows. Команда ECHO Управління індикацією на екрані вм...
17128. Файлові оболонки для ОС MS – DOS та файлові менеджери для ОС Windows 130.5 KB
Лекція №4 Тема: Файлові оболонки для ОС MS DOS та файлові менеджери для ОС Windows. План Можливості Norton Commander. Зміст панелей Norton Commander. Використовування функціональних клавіш. Меню команд користувача. файлові менеджери для ОС Windows. ПРОГРАМАОБОЛ
17129. ОС Linux. Архітектура ОС Linux 78 KB
Лекція №5 Тема: ОС Linux. Архітектура ОС Linux. План Архітектура Linux. Модулі ядра. Система файлів і каталоги. Імена файлів і каталогів. Розширення та дерево каталогів. Архітектура Linux В ОС Linux можна виділити три основні частини: ядро яке реа

Спецификой проблемы грозозащиты на ВЛЗ (воздушных линиях с защищенными проводами) является то, что если провода в изоляции ничем не защищать, то при грозовом перенапряжении и перекрытии изолятора образуется дуга, которой просто некуда перемещаться по проводу.

Соответственно она горит в месте пробоя изоляции до срабатывания защиты на подстанции и аварийного отключения ВЛ. Так как защита в этом случае срабатывает не сразу, то могут произойти следующие последствия:

  • повреждение изоляции СИП-3
  • разрушение самого изолятора на ВЛЗ
  • пережог и обрыв провода

Именно пережог провода является главным условием необходимости применения для СИП-3 устройств грозозащиты.

Дугозащитные рога

Первоначально широко применялась система дугозащитных "рогов". Когда дуга и однофазное замыкание искусственно переводились в двухфазное КЗ с гарантированным отключением ЛЭП.

Однако эта система имеет существенные недостатки:

  • она не защищает изоляцию от перенапряжения
  • не предотвращает отключения линии, а наоборот способствует этому

А между тем для линий с изолированной нейтралью однофазное замыкание не является аварийным режимом, требующим немедленного отключения.

Кроме того, "рога" периодически обгорают и требуют замены.

А при прохождении ВЛЗ через посадки и лесные просеки возможны межфазные замыкания из-за касания веток.

Поэтому для защиты ВЛЗ среднего напряжения 6-20кв от грозовых перенапряжений стали применять специальные устройства - длинно искровые разрядники петлевого типа РДИП.

Длинно искровые разрядники

Эти устройства должны устанавливаться на всем протяжении ВЛ, на подходах к подстанции и кабельным вставкам. Это позволяет исключить перекрытие изоляции на линии и свести на нет негативные последствия индуктированных грозовых перенапряжений.

При этом не должно происходить:

  • аварийных отключений ЛЭП
  • разрушение изоляторов
  • пережог провода
  • плюс обеспечивается защита подстанционного оборудования и кабельных вставок

Длинно искровые разрядники РДИП или PDR-10 (фирмы Niled) должны быть установлены на защищенном участке трассы по одному на каждую опору с циклическим чередованием фаз.

То есть:

  • на опоре №1 подключаем разрядник на фА
  • на опоре №2 на фВ
  • на опоре №3 на фС

Ставить на соседние фазы промежуточной опоры со штыревой изоляцией одновременно два разрядника РДИП не совсем желательно, даже если позволяет место. В противном случае однофазное замыкание может перейти в двухфазное с последующим аварийным отключением ВЛ.

Монтаж РДИП на ВЛ-6-10кв со штыревыми изоляторами

Закрепляете разрядник хомутом на штыре изолятора.

Чтобы выставить зазор между проводом СИП-3 и разрядником, разрешается вручную изменять изгиб петли. Далее монтируется универсальный или прокусывающий зажим. Он ставится с внутренней стороны петли.

Регулируется воздушный зазор. Его величина для ВЛЗ-6-10кв:

  • 40мм от провода СИП
  • 20мм от универсального зажима

Установка на натяжную гирлянду

Первым делом ослабляете крепление плеч разрядника. После чего РДИП отделяется от крепежа.

Кронштейн разворачивается на 180 градусов и одевается только на одно из плеч.

Делается это для того, чтобы петлю разрядники можно было продеть через провод СИП не разрывая его. Теперь оба плеча можно вновь затянуть.

Закрепляете кронштейн крепления на верхней серьге гирлянды и выставляете воздушный зазор. Он замеряется между центральным электродом на разряднике и ближайшей металлической частью арматуры.

Если нет возможности закрепить РДИП за гирлянду, то используют подходящие крепления траверс и укосов.

Разновидности крепежа и расстояния для петлевого разрядника на ВЛЗ-6-10кв:

Угловая анкерная опора Повышенная угловая промежуточная Угловая промежуточная Двухцепная угловая промежуточная Двухцепная анкерная Угловая анкерная Одноцепная угловая промежуточная

Недостатки РДИП

Однако длительный период эксплуатации показывает, что такого типа защита не всегда полностью выполняет свои функции. На некоторых ВЛ число однофазных КЗ может даже увеличиться.

Кроме того, испытания подтверждают что не всегда РДИП может защитить изоляцию на соседних опорах. То есть на последующих двух, где он не установлен по этой фазе. Здесь многое будет зависеть от марки изолятора, расстояния между опорами и уровня перенапряжения.

Даже изоляторы ШФ-20 может перекрыть.

Вот наглядное испытание в лаборатории:

Разрядники РМК-20, MCR

Поэтому в последнее время наряду с устройствами петлевого типа, стали широко применяться разрядники с мультикамерной системой РМК-20 или MCR (Niled).

Он более компактен и удобен в монтаже. По области применения и схеме установки MCR (РМК-20) аналогичен традиционным длинно-искровым. То есть также устанавливается на каждой опоре с чередованием фаз.

Из чего же состоит РМК-20:




Он также может дополняться индикатором срабатывания.

Конструкция кронштейна универсальна и позволяет крепить РМК-20 на промежуточных и анкерных опорах СВ-105,110,164 с несколькими типами изоляции.

Подготовка к монтажу

Перед установкой обязательно произведите внешний осмотр. Разрядный элемент должен быть без трещин, порезов, механических вмятин и т.д. Попробуйте прилагая легкое усилие согнуть элемент. Он должен быть достаточно упругим и сразу же восстанавливать свою изначальную форму.

Если в комплекте идут индикаторы срабатывания, то проверьте целостность стеклянной непрозрачной колбы.

Изначально разрядник поставляется в разобранном виде. Поэтому его необходимо собрать в единую конструкцию. Болтом с гайками и шайбами соединяете кронштейн и мультикамерную систему.

Монтаж РМК-20 на штыревой изолятор

Разрядник своим креплением устанавливается непосредственно на штырь под изолятором. Причем кронштейн изначально должен быть слегка ослаблен для возможности регулировки его положения.

Угол смещения разрядника относительно оси провода должен находиться в пределах 30 градусов.

Также регулируется расстояние от кронштейна до нижней юбки изолятора - 30мм. Делать это лучше всего с помощью шаблона.

После регулировки болты кронштейна можно затягивать. Усилие затяжки 25Нм.

Между проводом СИП-3 и наконечником РМК-20 должен быть воздушный промежуток фиксированной величины. Для этого на провод монтируется универсальный зажим.

Для ВЛЗ с проводами СИП-3 зажим имеет прокалывающий шип.

Важное замечание: если провод фиксируется на изоляторе спиральной вязкой, то шип должен проходить между ее витками, не повреждая саму вязку!

Универсальный зажим затягивается в горизонтальном положении.

Далее чтобы отрегулировать воздушный зазор, слегка откручиваете болтовое крепление и отводите разрядник в нужную сторону. Величину воздушного промежутка между концевым сферическим электродом и зажимом на СИП-3 прощу всего выставить по шаблону.

Этот зазор должен быть в следующих пределах:

  • для ВЛ-6-10кв - 40-60мм
  • для ВЛ-20кв - 50-70мм

Обратите внимание, что изгибать разрядник без ослабления его кронштейна запрещается. Иначе можете повредить внутренний армирующий элемент.

Разрядник закрепляется сверху на серьге подвесного изолятора.

Угол смещения элемента разрядника от оси провода - 30 градусов.

Выставив угол, кронштейн затягивается. Далее регулируете зазоры. Расстояние по горизонтали между юбкой верхнего изолятора и электродом разрядника должно быть примерно 30мм. Выставив его затягиваете все гайки.

Универсальный зажим здесь устанавливается максимально близко, вплотную к поддерживающему зажиму гирлянды.

При монтаже индикатора срабатывания соблюдайте его вертикальное расположение. В то же время он должен располагаться под сферическим электродом разрядника.

На проводе, напротив сферического наконечника, сразу за натяжным зажимом, закрепляется универсальный, либо индикатор срабатывания.

При этом он не должен быть на расстоянии ближе чем 50мм от края юбки изолятора.

Воздушный зазор до элемента самого РМК-20 здесь находится в более широких величинах - 50-100мм.

При коммутациях, а также вследствие атмосферных разрядов в электротехнических установках часто возникают импульсы напряжения - перенапряжения, существенно превышающие номинальное. Электрическая изоляция оборудования не должна повреждаться при этом и выбирается с соответствующим запасом. Однако возникающие перенапряжения зачастую превосходят этот запас, и изоляция тогда повреждается - пробивается, что может привести к тяжелым авариям. Для ограничения возникающих перенапряжений, а следовательно, и снижения требований к уровню электрической изоляции (снижения стоимости оборудования) применяются разрядники.

Разрядник - это электрический аппарат, искровой промежуток которого пробивается при определенном значении приложенного напряжения, ограничивая тем самым перенапряжения в установке.

Разрядник состоит из электродов с искровым промежутком между ними и дугогасительного устройства. Один из электродов присоединяется к защищаемой цепи, другой - заземляется.

Если кривая 1 (рис. 3-6) - номинальное напряжение, а кривая 3 - вольт-секундная характеристика изоляции оборудования (т. е. время, в течение которого изоляция может выдержать данное перенапряжение не повреждаясь), то вольт-секундная характеристика разрядника должна определяться кривой 2. При возникновении перенапряжения (кривая 4) искровой промежуток разрядника пробивается раньше (точка О), чем изоляция оборудования. После пробоя линия (сеть) заземляется через сопротивление разрядника или накоротко. При этом напряжение на линии определяется значением тока через разрядник, сопротивлением разрядника и заземления.

Падение напряжения на разряднике при протекании импульсного тока данного значения и формы называется остающимся напряжением. Чем меньше это напряжение, тем лучше качество разрядника.

После пробоя разрядника от импульса напряжения его искровой промежуток ионизирован и легко пробивается фазным напряжением. Возникает короткое замыкание на землю, и через разрядник протекает ток промышленной частоты, который называется сопровождающим. Чтобы избежать срабатывания защиты и отключения оборудования, разрядник должен отключить сопровождающий ток в возможно малое время (примерно в полупериод промышленной частоты).

Рис. 3-6. Вольт-секундные характеристики .

К разрядникам предъявляются следующие требования:

1. Вольт-секундная характеристика разрядника должна быть ниже, чем у защищаемого объекта.

2. Искровой промежуток разрядника должен иметь определенную гарантированную электрическую прочность при промышленной частоте.

3. Остающееся напряжение на разряднике, и характеризующее его ограничивающую способность, не должно превышать значений, которые опасны для изоляции оборудования.

4. Сопровождающий ток должен отключаться на малое время.

5. Разрядник должен допускать большое число срабатываний без осмотра и ремонта.

Трубчатые разрядники. Разрядник (рис. 3-7) представляет собой дугогасительную трубку 3 из полихлорвинила марки «винипласт», на концах которой закреплены металлические наконечники: верхний, закрытый, 2 и нижний, открытый, 7. Внутри трубки помещается стержневой электрод 4, который крепится в хвостовике 9 верхнего наконечника. Вторым электродом внутреннего искрового промежутка служит шайба б, закрепленная в нижнем наконечнике. При помощи хомутов 5 нижний наконечник (разрядник) крепится к заземленной конструкции. К нижнему же наконечнику крепится ленточный указатель срабатывания 8, свободный конец которого изгибается и заводится внутрь наконечника. При срабатывании разрядника конец указателя выбрасывается газовым дутьем, и лента выпрямляется.

Рис. 3-7. Общий вид трубчатого разрядника.

С целью разгрузки изоляционного материала разрядника от электрического поля при номинальном режиме разрядник отделяется от линии наружным (lнар) искровым промежутком, для регулирования которого служит удлинитель (рог) 1.

При возникновении перенапряжения пробиваются оба промежутка (lвн и lнар). Возникающая в трубке дуга вызывает сильную газогенерацию из стенок трубки. Газы устремляются через выхлопное отверстие в шайбе б и открытый наконечник, образуя интенсивное продольное дутье, которое гасит дугу при прохождении тока через нуль, одновременно гаснет дуга и на промежутке lнар. Отключение сопровождается большим выбросом пламени и газов (при U = 35 кВ А = 3 м, В = 1,5 м). В объеме, занимаемом пламенем и газами, не должны располагаться какие-либо токоведущие части. Предельный отключаемый ток определяется прочностью трубки и, например, для разрядников серии РТВ на 6-35 кВ составляет 12 кА. Предельные токи отключения разрядников с фибробакелитовыми трубками меньше, чем у разрядников с винипластовыми трубками.

Вентильные разрядники. Вентильный разрядник (рис. 3-8, а) состоит из двух основных частей: блока искровых промежутков 4, в который входит несколько последовательно соединенных единичных искровых промежутков 3 (рис. 3-8, б), шунтированных подковообразными нелинейными резисторами 9, предназначенными для выравнивания распределения напряжения, и рабочего резистора, составленного из набора последовательно включенных вилитовых дисков 2. Искровые промежутки заключены в фарфоровые цилиндры 5.

Блок искровых промежутков соединен последовательно с рабочим резистором, закрыт фарфоровым кожухом 1, сжат спиральной пружиной 6 и герметизирован озоностойкой резиной 7. Необходимость герметизации обусловлена гигроскопичностью вилита, который меняет свои характеристики при увлажнении. Разрядник крепится при помощи фланцев 8 к чугунному основанию (на рисунке не показано).

Провод фазы линии высокого напряжения подключается к болту на крышке. Заземляющий проводник присоединяется к чугунному основанию разрядника непосредственно или через счетчик срабатываний.

Разрядник работает следующим образом. При возникновении перенапряжения пробиваются искровые промежутки и импульсный ток через рабочий резистор уходит в землю. Сопровождающий ток ограничивается рабочим резистором до значения, при котором дуга может быть погашена искровыми промежутками. Единичный промежуток способен отключить ток с амплитудой 80-100. А при действующем восстанавливающемся напряжении 1-1,5 кВ. Число искровых про­межутков и число дисков резистора выбираются исходя из указанных условий. Дуга при этом погаснет за один полупериод.

Рис. 3-8. Вентельный разрядник.

Рис. 3-9. Блок с магнитными искровыми промежутками .

Резистор из вилита характеризуется нелинейностью своего сопротивления. С ростом тока значение сопротивления падает. Это позволяет пропустить через резистор большой ток при малом падении напряжения (из-за этого разрядники получили название в ентильных). Напряжение на разряднике практически мало меняется в широком диапазоне изменения токов. По мере приближения тока к нулю сопротивление резко возрастает, снижая ток до нуля ранее его естественного перехода через нуль. Это обстоятельство облегчает гашение дуги в единичных искровых промежутках.

Вентильные разрядники работают бесшумно и без какого-либо выброса газов и пламени. Для фиксации числа срабатываний устанавливаются специальные (электромагнитные, электромеханические и др.) счетчики. Вентильные разрядники выполняются на напряжения до 220 кВ и предназначены для защиты изоляции элек­трооборудования от атмосферных перенапряжений. Они применяются в открытых и закрытых электроустановках с частотой 50 Гц. Разрядники на 3, 6 и 10 кВ отличаются Друг от друга только числом искровых промежутков и числом вилитовых резисторов, а также габаритами. Разрядники на номинальные напряжения 15, 20 и 35 кВ состоят из одного стандартного элемента, аналогичного изображенному на рис. 3-8, а; разрядники на напряжение 60 кВ и выше-из трех и более соединенных последовательно стандартных элементов номинальным напряжением 15, 20 или 35 кВ.

Разрядники магнитовентнльные (РМВГ). Эти разрядники выполняются на номинальные напряжения 150-500 кВ. Они комплектуются из стандартных блоков (на 30 кВ) с магнитными искровыми промежутками и соответствующего числа дисков вилитовых резисторов.

Блок магнитных искровых промежутков (рис. 3-9) представляет собой набор (здесь четыре) единичных искровых промежутков 2, расположенных вперемежку с постоянными магнитами 3 кольцевой формы. Все устройство размещено в фарфоровом цилиндре 1 и закрыто стальными крышками 5. Крепление всех элементов внутри цилиндра осуществляется за счет давления пружины 4. Каждый блок шунтируется резисторами с высокоомным нелинейным сопротивлением.

Единичный магнитный искровой промежуток состоит из двух концентрически расположенных медных электродов б и 8. Щель 7 между ними образует искровой зазор. Кольцевые магниты 3 создают в щели магнитное поле (480-640 А/см).

Возникающая в щели дуга начинает вращаться по кольцевой щели с большой скоростью. По сравнению с обычными искровыми промежутками пропускная и дугогасительная способность магнитного искрового промежутка много выше.

Разрядники постоянного тока. Применение разрядников с обычными искровыми промежутками для защиты электрооборудования постоянного тока невозможно. Падение напряжения на искровом промежутке после его пробоя составит всего 20-30 В, и для гашения дуги потребуется чрезвычайно большое число промежутков; напряжение пробоя будет чрезмерно высоким, и не будет обеспечена защита изоляции.

Разрядники постоянного тока выполняются с устройствами для гашения дуги. Так, магнитные разрядники постоянного тока серии РМБВ состоят из искровых промежутков с дугогасящей камерой (шунтированных или не шунтированных резисторами с высокоомными нелинейными сопротивлениями), блока рабочего нелинейного вилитового резистора и дугогасящего искрового промежутка с постоянными магнитами. Конструктивно они выполняются аналогично вентильным разрядникам.

Магнитный разрядник типа РАН-1 - разрядник многократного действия с пониженным давлением внутри корпуса, предназначен для защиты от перенапряжений обмоток возбуждения синхронных машин. Разрядник имеет диапазон регулирования уставки по пробивному напряжению 1200-3500 В (амплитудное значение) и позволяет пропускать ток до 5000 А (амплитудное значение) при среднем значении тока в течение 1 с до 1000 А. Номинальное напряжение разрядника 1000 В постоянного тока.