Скорость. ускорение

Ско́рость в физическая величина, характеризующая быстроту перемещения и направление движения материальной точки относительно выбранной системы отсчёта; по определению, равна производной радиус-вектора точки по времени.

Скорость в широком смысле - быстроту изменения какой-либо величины (не обязательно радиус-вектора) в зависимости от другой (чаще подразумеваются изменения во времени, но также в пространстве или любой другой). Так, например, говорят об угловой скорости, скорости изменения температуры, скорости химической реакции, групповой скорости, скорости соединения и т. д. Математически «быстрота изменения» характеризуется производной рассматриваемой величины.

Ускоре́ние обозначается - быстрота изменения скорости, то есть первая производная от скорости по времени,векторная величина, показывающая, на сколько изменяется вектор скорости тела при его движении за единицу времени:

ускорение является вектором, то есть учитывает не только изменение величины скорости (модуля векторной величины), но и изменение её направления. В частности, ускорение тела, движущегося по окружности с постоянной по модулю скоростью, не равно нулю; тело испытывает постоянное по модулю (и переменное по направлению) ускорение, направленное к центру окружности (центростремительное ускорение).

Единицей ускорения в Международной системе единиц (СИ) служит метр в секунду за секунду (m/s2, м/с2),

Производная ускорения по времени, то есть величина, характеризующая скорость изменения ускорения, называется рывок:

Где - вектор рывка.

Ускорение – это величина, которая характеризует быстроту изменения скорости.

Среднее ускорение

Среднее ускорение> – это отношение изменения скорости к промежутку времени, за который это изменении произошло. Определить среднее ускорение можно формулой:

где – вектор ускорения.

Направление вектора ускорения совпадает с направлением изменения скорости Δ = - 0 (здесь 0 – это начальная скорость, то есть скорость, с которой тело начало ускоряться).

В момент времени t1 (см. рис 1.8) тело имеет скорость 0. В момент времени t2 тело имеет скорость . Согласно правилу вычитания векторов найдём вектор изменения скорости Δ = - 0. Тогда определить ускорение можно так:

В СИ единица ускорения – это 1 метр в секунду за секунду (или метр на секунду в квадрате), то есть

Метр на секунду в квадрате равен ускорению прямолинейно движущейся точки, при котором за одну секунду скорость этой точки увеличивается на 1 м/с. Иными словами, ускорение определяет, насколько изменяется скорость тела за одну секунду. Например, если ускорение равно 5 м/с2, то это означает, что скорость тела каждую секунду увеличивается на 5 м/с.


Мгновенное ускорение

Мгновенное ускорение тела (материальной точки) в данный момент времени – это физическая величина, равная пределу, к которому стремится среднее ускорение при стремлении промежутка времени к нулю. Иными словами – это ускорение, которое развивает тело за очень короткий отрезок времени:

Направление ускорения также совпадает с направлением изменения скорости Δ при очень малых значениях промежутка времени, за который происходит изменение скорости. Вектор ускорения может быть задан проекциями на соответствующие оси координат в данной системе отсчёта (проекциями аХ, aY, aZ).

При ускоренном прямолинейном движении скорость тела возрастает по модулю, то есть

а направление вектора ускорения совпадает с вектором скорости 2.

Если скорость тела по модулю уменьшается, то есть

то направление вектора ускорения противоположно направлению вектора скорости 2. Иначе говоря, в данном случае происходитзамедление движения, при этом ускорение будет отрицательным (а < 0). На рис. 1.9 показано направление векторов ускорения при прямолинейном движении тела для случая ускорения и замедления.

Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения (см. рис. 1.10). Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой n. Вектор нормального ускорения направлен по радиусу кривизны траектории.



Ускорение – это величина, которая характеризует быстроту изменения скорости.

Например, автомобиль, трогаясь с места, увеличивает скорость движения, то есть движется ускоренно. Вначале его скорость равна нулю. Тронувшись с места, автомобиль постепенно разгоняется до какой-то определённой скорости. Если на его пути загорится красный сигнал светофора, то автомобиль остановится. Но остановится он не сразу, а за какое-то время. То есть скорость его будет уменьшаться вплоть до нуля – автомобиль будет двигаться замедленно, пока совсем не остановится. Однако в физике нет термина «замедление». Если тело движется, замедляя скорость, то это тоже будет ускорение тела, только со знаком минус (как вы помните, – это векторная величина).


> – это отношение изменения скорости к промежутку времени, за который это изменении произошло. Определить среднее ускорение можно формулой:

где – вектор ускорения .

Направление вектора ускорения совпадает с направлением изменения скорости Δ = - 0 (здесь 0 – это начальная скорость, то есть скорость, с которой тело начало ускоряться).

В момент времени t1 (см. рис 1.8) тело имеет скорость 0 . В момент времени t2 тело имеет скорость . Согласно правилу вычитания векторов найдём вектор изменения скорости Δ = - 0 . Тогда определить ускорение можно так:

Рис. 1.8. Среднее ускорение.

В СИ единица ускорения – это 1 метр в секунду за секунду (или метр на секунду в квадрате), то есть

Метр на секунду в квадрате равен ускорению прямолинейно движущейся точки, при котором за одну секунду скорость этой точки увеличивается на 1 м/с. Иными словами, ускорение определяет, насколько изменяется скорость тела за одну секунду. Например, если ускорение равно 5 м/с 2 , то это означает, что скорость тела каждую секунду увеличивается на 5 м/с.


Мгновенное ускорение тела (материальной точки) в данный момент времени – это физическая величина, равная пределу, к которому стремится среднее ускорение при стремлении промежутка времени к нулю. Иными словами – это ускорение, которое развивает тело за очень короткий отрезок времени:

Направление ускорения также совпадает с направлением изменения скорости Δ при очень малых значениях промежутка времени, за который происходит изменение скорости. Вектор ускорения может быть задан проекциями на соответствующие оси координат в данной системе отсчёта (проекциями а Х, a Y , a Z).

При ускоренном прямолинейном движении скорость тела возрастает по модулю, то есть

Если скорость тела по модулю уменьшается, то есть

V 2 то направление вектора ускорения противоположно направлению вектора скорости 2 . Иначе говоря, в данном случае происходит замедление движения , при этом ускорение будет отрицательным (а

Рис. 1.9. Мгновенное ускорение.

При движении по криволинейной траектории изменяется не только модуль скорости, но и её направление. В этом случае вектор ускорение представляют в виде двух составляющих (см. следующий раздел).


Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

Рис. 1.10. Тангенциальное ускорение.

Направление вектора тангенциального ускорения τ (см. рис. 1.10) совпадает с направлением линейной скорости или противоположно ему. То есть вектор тангенциального ускорения лежит на одной оси с касательной окружности, которая является траекторией движения тела.

Нормальное ускорение

Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения (см. рис. 1.10). Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой n . Вектор нормального ускорения направлен по радиусу кривизны траектории.

Полное ускорение

Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по правилу сложения векторов и определяется формулой:

(согласно теореме Пифагора для прямоугольно прямоугольника).

= τ + n

Перемеще́ние (в кинематике) - изменение местоположения физического тела в пространстве относительно выбранной системы отсчёта. Также перемещениемназывают вектор, характеризующий это изменение. Обладает свойством аддитивности.

Ско́рость (часто обозначается , от англ. velocity или фр. vitesse) - векторная физическая величина, характеризующая быстротуперемещения и направления движения материальной точки в пространстве относительно выбранной системы отсчёта (например, угловая скорость).

Ускоре́ние (обычно обозначается , в теоретической механике ) - производная скорости по времени, векторная величина, показывающая, насколько изменяется вектор скорости точки (тела) при её движении за единицу времени (т.е. ускорение учитывает не только изменение величины скорости, но и её направления).

Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

Рис. 1.10. Тангенциальное ускорение.

Направление вектора тангенциального ускорения τ (см. рис. 1.10) совпадает с направлением линейной скорости или противоположно ему. То есть вектор тангенциального ускорения лежит на одной оси с касательной окружности, которая является траекторией движения тела.

Нормальное ускорение

Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения (см. рис. 1.10). Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой n . Вектор нормального ускорения направлен по радиусу кривизны траектории.

Полное ускорение

Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по правилу сложения векторов и определяется формулой:

(согласно теореме Пифагора для прямоугольно прямоугольника).

Направление полного ускорения также определяется правилом сложения векторов:

    Сила. Масса. Законы Ньютона.

Си́ла - векторная физическая величина, являющаяся мерой интенсивности воздействия на данное тело других тел, а также полей. Приложенная к массивному телу сила является причиной изменения его скорости или возникновения в нём деформаций.

Ма́сса (от греч. μάζα) - скалярная физическая величина, одна из важнейших величин в физике. Первоначально (XVII-XIX века) она характеризовала «количество вещества» в физическом объекте, от которого, по представлениям того времени, зависели как способность объекта сопротивляться приложенной силе (инертность), так и гравитационные свойства - вес. Тесно связана с понятиями «энергия» и «импульс» (по современным представлениям - масса эквивалентна энергии покоя).

Первый закон Ньютона

Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальная точка при отсутствии внешних воздействий сохраняет величину и направление своей скорости неограниченно долго.

Второй закон Ньютона

В инерциальной системе отсчёта ускорение, которое получает материальная точка, прямо пропорционально равнодействующей всех приложенных к ней сил и обратно пропорционально её массе.

Третий закон Ньютона

Материальные точки попарно действуют друг на друга с силами, имеющими одинаковую природу, направленными вдоль прямой, соединяющей эти точки, равными по модулю и противоположными по направлению:

    Импульс. Закон сохранения импульса. Упругие и неупругие удары.

И́мпульс (Количество движения) - векторная физическая величина, характеризующая меру механического движения тела. В классической механике импульс тела равен произведению массы m этого тела на его скорость v, направление импульса совпадает с направлением вектора скорости:

Зако́н сохране́ния и́мпульса (Зако́н сохране́ния количества движения) утверждает, что векторная сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная.

В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил.

Как и любой из фундаментальных законов сохранения, закон сохранения импульса описывает одну из фундаментальных симметрий, - однородность пространства.

Абсолютно неупругим ударом называют такое ударное взаимодействие, при котором тела соединяются (слипаются) друг с другом и движутся дальше как одно тело.

При абсолютно неупругом ударе механическая энергия не сохраняется. Она частично или полностью переходит во внутреннюю энергию тел (нагревание).

Абсолютно упругим ударом называется столкновение, при котором сохраняется механическая энергия системы тел.

Во многих случаях столкновения атомов, молекул и элементарных частиц подчиняются законам абсолютно упругого удара.

При абсолютно упругом ударе наряду с законом сохранения импульса выполняется закон сохранения механической энергии.

4. Виды механической энергии. Работа. Мощность. Закон сохранения энергии.

В механике различают два вида энергии: кинетическую и потенциальную.

Кинетической энергией называют механическую энергию всякого свободно движущегося тела и измеряют ее той работой, которую могло бы совершить тело при его торможении до полной остановки.

Итак, кинетическая энергия поступательно движущегося тела равна половине произведения массы этого тела на квадрат его скорости:

Потенциальная энергия – это механическая энергия системы тел, определяемая их взаимным расположением и характером сил взаимодействия между ними. Численно потенциальная энергия системы в данном ее положении равна работе, которую произведут действующие на систему силы при перемещении системы из этого положения в то, где потенциальная энергия условно принимается равной нулю (E n = 0). Понятие «потенциальная энергия» имеет место только для консервативных систем, т.е. систем, у которых работа действующих сил зависит только от начального и конечного положения системы.

Так, для груза весом P, поднятого на высоту h, потенциальная энергия будет равна E n = Ph (E n = 0 при h = 0); для груза, прикрепленного к пружине, E n = kΔl 2 / 2, где Δl - удлинение (сжатие) пружины, k – ее коэффициент жесткости (E n = 0 при l = 0); для двух частиц с массами m 1 и m 2 , притягивающимися по закону всемирного тяготения, , где γ – гравитационная постоянная, r – расстояние между частицами (E n = 0 при r → ∞).

Термин "работа" в механике имеет два смысла: работа как процесс, при котором сила перемещает тело, действуя под углом, отличном от 90°; работа - физическая величина, равная произведению силы, перемещения и косинуса угла между направлением действия силы и перемещением:

Работа равна нулю, когда тело движется по инерции (F = 0), когда нет перемещения (s = 0) или когда угол между перемещением и силой равен 90° (cos а = 0). Единицей работы в СИ служит джоуль (Дж).

1 джоуль - это такая работа, которая совершается силой 1 Н при перемещении тела на 1 м по линии действия силы. Для определения быстроты совершения работы вводят величину "мощность".

Мо́щность - физическая величина, равная отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.

Различают среднюю мощность за промежуток времени :

и мгновенную мощность в данный момент времени:

Так как работа является мерой изменения энергии, мощность можно определить также как скорость изменения энергии системы.

В системе СИ единицей измерения мощности является ватт, равный одному джоулю, делённому на секунду.

Зако́н сохране́ния эне́ргии - фундаментальный закон природы, установленный эмпирически и заключающийся в том, что для изолированной физической системыможет быть введена скалярная физическая величина, являющаяся функцией параметров системы и называемая энергией, которая сохраняется с течением времени. Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда, закономерность, то его можно именовать не законом, а принципом сохранения энергии.

Вопросы к экзамену по физике (ч. I, 2011 г).

    Кинематика поступательного движения. Системы отсчета. Траектория, длина пути, перемещение. Скорость и ускорение. Средняя, средняя путевая, мгновенная скорость. Нормальное, тангенциальное и полное ускорение.

    Кинематические характеристики вращательного движения вокруг неподвижной оси: угловая скорость, угловое ускорение.

    Динамика поступательного движения. Законы Ньютона. (Савельев И.В. Т.1 § 7, 9, 11). Основные физические величины и их размерности. (Савельев И.В. Т.1 § 10). Виды сил в механике. (Савельев И.В. Т.1 § 13–16).

    Кинетическая и потенциальная энергия. Механическая работа и мощность. Консервативные и неконсервативные силы. Работа в поле этих сил. Закон сохранения энергии.

    Импульс механической системы. Закон сохранения импульса.

    Момент силы относительно точки и относительно оси вращения.

    Момент импульса материальной точки относительно точки и относительно оси вращения. Момент импульса тела относительно оси. Закон сохранения момента импульса.

    Основной закон динамики вращательного движения. Моменты инерции однородных тел правильной геометрической формы. Теорема Штейнера о параллельных осях.

    Кинетическая энергия, работа и мощность при вращательном движении. Сопоставление основных формул и законов поступательного и вращательного движения.

    Кинематика гармонических колебаний. Величины, характеризующие гармонические колебания: период, частота, амплитуда, фаза. Связь между периодом колебаний и циклической частотой. Зависимости смещения, скорости и ускорения от времени. Соответствующие графики.

    Уравнение гармонических колебаний в дифференциальной форме. Зависимость смещения от времени. Связь между циклической частотой и массой колеблющейся точки. Энергия гармонических колебаний (кинетическая, потенциальная и полная). Соответствующие графики.

    Математический и физический маятники. Формулы для периода малых колебаний. (Савельев И.В. Т.1 § 54).

    Сложение гармонических колебаний одинакового направления и одинаковой частоты. Векторная диаграмма. (Савельев Т.1 § 55).

    Затухающие колебания. Уравнение затухающих колебаний в дифференциальной форме. Зависимость смещения и амплитуды затухающих колебаний от времени. Коэффициент затухания. Логарифмический декремент колебаний. (Савельев И.В. Т.1 § 58).

    Вынужденные колебания. Уравнение вынужденных колебаний в дифференциальной форме. Смещение, амплитуда и частота вынужденных колебаний. Явление резонанса. График зависимости амплитуды от частоты.

    Волны. Распространение волн в упругой среде. Поперечные и продольные волны. Фронт волны и волновые поверхности. Длина волны. Уравнение бегущей волны. (Савельев Т.2 § 93-95).

    Образование стоячих волн. Уравнение стоячей волны. Амплитуда стоячей волны. (Савельев И.В. Т.2 § 99)

    Два подхода к изучению макросистем: молекулярно-кинетический и термодинамический. Основные параметры макросистем. Уравнение состояния идеального газа (уравнение Клапейрона-Менделеева). (Савельев И.В. Т.1 § 79–81, 86).

    Уравнение состояния реального газа (уравнение Ван-дер-Ваальса). Теоретическая изотерма Ван-дер-Ваальса и экспериментальная изотерма реального газа. Критическое состояние вещества. (Савельев И.В. Т.1 § 91, § 123–124).

    Внутренняя энергия системы. Внутренняя энергия идеального газа. Два способа изменения внутренней энергии. Количество теплоты. Теплоемкость. Связь удельной и молярной теплоемкостей.

    Работа при изменении объема. Первое начало термодинамики. Формула Майера. Применение первого начала термодинамики к изопроцессам идеального газа.

    Классическая теория теплоемкости идеального газа. Теорема Больцмана о равномерном распределении энергии по степеням свободы молекулы. Вычисление внутренней энергии идеального газа и его теплоемкостей через число степеней свободы. (Савельев И.В. Т.1 § 97).

    Применение первого начала термодинамики к адиабатическому процессу. Уравнение Пуассона. (Савельев И.В. Т.1 § 88).

1. Кинематика поступательного движения. Системы отсчета. Траектория, длина пути, перемещение. Скорость и ускорение. Средняя, средняя путевая, мгновенная скорость. Нормальное, тангенциальное и полное ускорение.

Кинематика поступательного движения

При поступательном движении тела все точки тела движутся одинаково, и, вместо того чтобы рассматривать движение каждой точки тела, можно рассматривать движение только одной его точки.

Основные характеристики движения материальной точки: траектория движения, перемещение точки, пройденный ею путь, координаты, скорость и ускорение.

Линию, по которой движется материальная точка в пространстве, называют траекторией .

Перемещением материальной точки за некоторый промежуток времени называется вектор перемещения ∆r=r-r 0 , направленный от положения точки в начальный момент времени к ее положению в конечный момент.

Скорость материальной точки представляет собой вектор, характеризующий направление и быстроту перемещения материальной точки относительно тела отсчета. Вектор ускорения характеризует быстроту и направление изменения скорости материальной точки относительно тела отсчета.

Средняя скорость - векторная физическая величина равная отношению вектора перемещения к промежутку времени, за который происходит это перемещение:

Мгновенная скорость - векторная физическая величина, равная первой производной от радиус-вектора по времени:

Мгновенная скорость v есть векторная величина, равная первой производной радиуса - вектора движущейся точки по времени. Так как секущая в пределе совпадает с касательной, то вектор скорости v направлен по касательной к траектории в сторону движения (рисунок 1.2).

По мере уменьшение ∆t путь ∆S все больше будет приближаться к |∆r|, поэтому модуль мгновенной скорости :

Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения (см. рис. 1.10). Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой а n . Вектор нормального ускорения направлен по радиусу кривизны траектории.

Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по правилу сложения векторов и определяется формулой:

(согласно теореме Пифагора для прямоугольно прямоугольника).

Направление полного ускорения также определяется правилом сложения векторов :

а= а τ + а n

Ускорение – это величина, которая характеризует быстроту изменения скорости.

Например, автомобиль, трогаясь с места, увеличивает скорость движения, то есть движется ускоренно. Вначале его скорость равна нулю. Тронувшись с места, автомобиль постепенно разгоняется до какой-то определённой скорости. Если на его пути загорится красный сигнал светофора, то автомобиль остановится. Но остановится он не сразу, а за какое-то время. То есть скорость его будет уменьшаться вплоть до нуля – автомобиль будет двигаться замедленно, пока совсем не остановится. Однако в физике нет термина «замедление». Если тело движется, замедляя скорость, то это тоже будет ускорение тела, только со знаком минус (как вы помните, скорость – это векторная величина).

Среднее ускорение > – это отношение изменения скорости к промежутку времени, за который это изменении произошло. Определить среднее ускорение можно формулой:

где a – вектор ускорения .

Направление вектора ускорения совпадает с направлением изменения скорости ΔV = V - V 0 (здесь 0 – это начальная скорость, то есть скорость, с которой тело начало ускоряться).

В момент времени t1 (см. рис 1.8) тело имеет скорость V 0 . В момент времени t2 тело имеет скорость V. Согласно правилу вычитания векторов найдём вектор изменения скорости ΔV = V - V 0 Тогда определить ускорение можно так:

Рис. 1.8. Среднее ускорение.

В СИ единица ускорения – это 1 метр в секунду за секунду (или метр на секунду в квадрате), то есть

Метр на секунду в квадрате равен ускорению прямолинейно движущейся точки, при котором за одну секунду скорость этой точки увеличивается на 1 м/с. Иными словами, ускорение определяет, насколько изменяется скорость тела за одну секунду. Например, если ускорение равно 5 м/с 2 , то это означает, что скорость тела каждую секунду увеличивается на 5 м/с.

Можно также ввести среднюю скорость по перемещению , которая будет вектором , равным отношению перемещения ко времени, за которое оно совершено:

Средняя скорость, определённая таким образом, может равняться нулю даже в том случае, если точка (тело) реально двигалась (но в конце промежутка времени вернулась в исходное положение).

Если перемещение происходило по прямой (причём в одном направлении), то средняя путевая скорость равна модулю средней скорости по перемещению.

Движение тел происходит в пространстве и во времени. Поэтому для описания движения материальной точки надо знать, в каких местах пространства эта точка находилась и в какие моменты времени она проходила то или иное положение.

Тело отсчета - произвольно выбранное тело, относительно которого определяется положение остальных тел.

Система отсчета - совокупность системы координат и часов, связанных с телом отсчета.

Наиболее употребительная система координат - декартовая - ортонормированный базис которой образован тремя единичными по модулю и взаимно ортогональными векторами i j k r r r , проведенными из начала координат.

Положение произвольной точки M характеризуется радиусом-вектором R r , соединяющим начало координат O с точкой M . r x i y j z k r r r r = + + , r = r = x 2 + y 2+ z 2 r

Движение материальной точки полностью определено, если декартовы координаты материальной точки заданы в зависимости от времени: x = x (t ) y = y (t ) z =z (t )

Эти уравнения называются кинематическими уравнениями движения точки . Они эквивалентны одному векторному уравнению движения точки.

Линия, описываемая движущейся материальной точкой (или телом) относительно выбранной системы отсчета называется траекторией . Уравнение траектории можно получить, исключив параметр t из кинематических уравнений. В зависимости от формы траектории движение может быть прямолинейным или криволинейным .

Длиной пути точки называется сумма длин всех участков траектории, пройденных этой точкой за рассматриваемый промежуток времени s = s (t ) . Длина пути - скалярная функция времени.

Вектор перемещения r r r 0 r r r = - вектор, проведенный из начального положения движущейся точки в положение ее в данный момент времени (приращение радиуса-вектора точки за рассматриваемый промежуток времени).

Линию, по которой движется материальная точка в пространстве, называют траекторией ее движения . Иными словами, траекторией движения называют совокупность всех последовательных положений, занимаемых материальной точкой при ее движении в пространстве.

Одним из основных понятий механики является понятие материальной точки , что означает тело, обладающее массой, размерами которого можно пренебречь при рассмотрении его движения. Движение материальной точки - простейшая задача механики, которая позволит рассмотреть более сложные типы движений.

Перемещение материальной точки происходит в пространстве и изменяется со временем. Реальное пространство трехмерно, и положение материальной точки в любой момент времени полностью определяется тремя числами - ее координатами в выбранной системе отсчета. Число независимых величин, задание которых необходимо для однозначного определения положения тела, называется числом его степеней свободы. В качестве системы координат выберем прямоугольную, или декартову, систему координат. Для описания движения точки, кроме системы координат, необходимо еще иметь устройство, с помощью которого можно измерять различные отрезки времени. Такое устройство назовем часами. Выбранная система координат и связанные с ней часы образуют систему отсчета.

Д
екартовы координатыX ,Y ,Z определяют в пространстве радиус-вектор z , острие которого описывает при его изменении со временем траекторию материальной точки. Длина траектории точки представляет собой величину пройденного пути S (t ). Путь S (t )- скалярная величина. Наряду с величиной пройденного пути, перемещение точки характеризуется направлением, в котором она движется. Разность двух радиус-векторов, взятых в различные моменты времени, образует вектор перемещения точки (рис.).

Для того чтобы характеризовать, как быстро меняется положение точки в пространстве, пользуются понятием скорости. Под средней скоростью движения по траектории за конечное время t понимают отношение пройденного за это время конечного пути S ко времени:


. (1.1)

Скорость движения точки по траектории - скалярная величина. Наряду с ней можно говорить о средней скорости перемещения точки. Эта скорость - величина, направленная вдоль вектора перемещения,

. (1.2)

Если моменты времени t 1 , и t 2 бесконечно близки, то время t бесконечно мало и в этом случае обозначается через dt . За время dt точка проходит бесконечно малое расстояние dS . Их отношение образует мгновенную скорость точки

. (1.3)

Производная радиус-вектора r по времени определяет мгновенную скорость перемещения точки.

. (1.4)

Поскольку перемещение совпадает с бесконечно малым элементом траектории dr = dS , то вектор скорости направлен по касательной к траектории, а его величина:

. (1.5)

Н
а рис. показана зависимость пройденного путиS от времени t . Вектор скорости v (t ) направлен по касательной к кривой S (t ) в момент времени t . Из рис. видно, что угол наклона касательной к оси t равен

.

Интегрируя выражение (1.5) в интервале времени от t 0 до t , получим формулу, позволяющую вычислить путь, пройденный телом за время t -t 0 если известна зависимость от времени его скорости v (t )

. (1.6)

Г
еометрический смысл этой формулы ясен из рис. По определению интеграла пройденный путь представляет собой площадь, ограниченную кривойv =v (t ) в интервале от t 0 до t .В случае равномерного движения, когда скорость сохраняет свое постоянное значение во все время движе­ния, v =const ; отсюда следует выражение

, (1.7)

где S 0 ‑ путь, пройденный к начальному времени t 0 .

Производную скорости по времени, которая является второй производной по времени от радиус-вектора, называют ускорением точки:

. (1.8)

Вектор ускорения а направлен вдоль вектора приращения скорости dv . Пусть а = const . Этот важный и часто встречаемый случай носит название равноускоренного или равнозамедленного (в зависимости от знака величины а) движения. Проинтегрируем выражение (1.8) в пределах от t = 0 до t :

(1.9)

(1.10)

и используем следующие начальные условия:
.

Таким образом, при равноускоренном движении


. (1.11)

В частности, при одномерном движении, например вдоль оси X ,
. Случай прямолинейного движения изображен на рис. При больших временах зависимость координаты от времени представляет собой параболу.

Вобщем случае движение точки может быть криволинейным. Рассмотрим этот тип движения. Если траектория точки произвольная кривая, то скорость и ускорение точки при ее движении по этой кривой меняются по величине и направлению.

Выберем произвольную точку на траектории. Как всякий вектор, вектор ускорения можно представить в виде суммы его составляющих по двум взаимно перпендикулярным осям. В качестве одной из осей возьмем направление касательной в рассматриваемой точке траектории, тогда другой осью окажется направление нормали к кривой в этой же точке. Составляющая ускорения, направленная по касательной к траектории, носит название тангенциального ускорения a t , а направленная ей перпендикулярно - нормального ускорения a n .

Получим формулы, выражающие величины a t , и a n через характеристики движения. Для простоты рассмотрим вместо произвольной криволинейной траектории плоскую кривую. Окончательные формулы остаются справедливыми и в общем случае неплоской траектории.

Б
лагодаря ускорению скорость точки приобретает за времяdt малое изменение dv . При этом тангенциальное ускорение, направленное по касательной к траектории, зависит только от величины скорости, но не от ее направления. Это изменение величины скорости равно dv . Поэтому тангенциальное ускорение может быть записано как производная по времени от величины скорости:

. (1.12)

С другой стороны, изменение dv n , направленное перпендикулярно к v , характеризует только изменение направления вектора скорости, но не его величины. На рис. показано изменение вектора скорости, вызванное действием нормального ускорения. Как видно из рис.
, и, таким образом, с точностью до величины второго порядка малости величина скорости остается неизменнойv =v" .

Найдем величину a n . Проще всего это сделать, взяв наиболее простой случай криволинейного движения - равномерное движение по окружности. При этом a t =0. Рассмотрим перемещение точки за время dt по дуге dS окружности радиуса R .

С
коростиv и v" , как отмечалось, остаются равными по величине. Изображенные на рис. треугольники оказываются, таким образом, подобными (как равнобедренные с равными углами при вершинах). Из подобия треугольников следует
, откуда находим выражение для нормального ускорения:

. (1.13)

Формула для полного ускорения при криволинейном движении имеет вид:

. (1.14)

Подчеркнем, что соотношения (1.12), (1.13) и (1.14) справедливы для всякого криволинейного движения, а не только для движения по окружности. Это связано с тем, что всякий участок криволинейной траектории в достаточно малой окрестности точки можно приближенно заменить дугой окружности. Радиус этой окружности, называемый радиусом кривизны траектории, будет меняться от точки к точке и требует специального вычисления. Таким образом, формула (1.14) остается справедливой и в общем случае пространственной кривой.

2. Кинематические характеристики вращательного движения вокруг неподвижной оси: угловая скорость, угловое ускорение.

Движение твердого тела, при котором две его точки О и О " остаются неподвижными, называется вращательным движением вокруг неподвижной оси, а неподвижную прямую ОО " называют осью вращения . Пусть абсолютно твердое тело вращается вокруг неподвижной оси ОО " (рис. 2.12).

Рис. 2.12

Проследим за некоторой точкой М этого твердого тела. За время dt точка М совершает элементарное перемещение d r . При том же самом угле поворота d φ, другая точка, отстоящая от оси на большее или меньшее расстояние, совершает другое перемещение. Следовательно, ни само перемещение некоторой точки твердого тела, ни первая производная , ни вторая производная не могут служить характеристикой движения всего твердого тела. За это же время dt радиус-вектор R, проведенный из точки 0 " в точку М , повернется на угол d φ. На такой же угол повернется радиус-вектор любой другой точки (т.к. тело абсолютно твердое, в противном случае расстояние между точками должно измениться). Угол поворота d φ характеризует перемещение всего тела за время dt . Удобно ввести – вектор элементарного поворота тела, численно равный d φ и направленный вдоль оси вращения ОО " так, чтобы, глядя вдоль вектора, мы видели вращение по часовой стрелке (направление вектора и направление вращения связаны «правилом буравчика»). Элементарные повороты удовлетворяют обычному правилу сложения векторов:

Угловая скорость вращения тела

Угловой скоростью тела в данный момент t называется величина, к которой стремится средняя угловая скорость , если стремится к нулю.

Угловая скорость твердого тела является первой производной от угла поворота по времени.

Размерность: [радиан/время]; ; .

Угловую скорость можно изображать вектором. Вектор угловой скорости направляют по оси вращения в ту сторону, откуда вращение видно против хода часовой стрелки.

Если угловая скорость не является постоянной величиной, то вводят еще одну характеристику вращения - угловое ускорение.

Угловое ускорение характеризует изменение угловой скорости тела с течением времени.

Если за промежуток времени угловая скорость получает приращение , то среднее угловое ускорение равно

вращение, - один из простейших видов движения твёрдого тела. В. д. вокруг неподвижной оси - движение, при к-ром все точки тела, двигаясь в параллельных плоскостях, описывают окружности с центрами, лежащими на одной неподвижной прямой, перпендикулярной к плоскостям этих окружностей и наз. осью вращения. Скорость произвольной точки тела v = , где w - угловая скорость тела, г - радиус-вектор, проведённый в точку из центра описываемой ею окружности.Угловое ускорение тела e = М/I, где М - момент внеш. сил относительно оси вращения, I - момент инерции тела относительно той же оси.

В. д. вокруг неподвижной точки - движение, при к-ром все точки тела движутся по поверхностям концентрич. сфер с центрами в неподвижной точке. В каждый момент времени это движение можно рассматривать как вращение вокруг мгновенной оси вращения, проходящей через неподвижную точку. Скорость произвольной точки тела v = , здесь г - радиус-вектор, проведённый в точку из неподвижной точки тела. Основной закон динамики: dL/dt = М, где L - момент импульса тела относительно неподвижной точки, М - момент относительно той же точки всех внеш. сил, приложенных к телу, наз. главным моментом внешних сил. Этот закон справедлив также для вращения твёрдого тела вокруг его центра инерции независимо от того, покоится последний или движется произвольно. Теория В. д. имеет многочисл. приложения в небесной механике, внеш. баллистике, теории гироскопа, теории машин и механизмов.

Пройденный путь S , перемещение dr, скорость v , тангенциальное и нормальное ускорение a t , и a n , представляют собой линейные величины. Для описания криволинейного движения наряду снимиможно пользоваться угловыми величинами.

Рассмотрим более подробно важный и часто встречаемый случай движения по окружности. В этом случае наряду с длиной дуги окружности движение можно характеризовать утлом поворота φ вокруг оси вращения. Величину

(1.15)

называют угловой скоростью. Угловая скорость представляет собой вектор, направление которого связывают с направлением оси вращения тела (рис.).

Обратим внимание на то, что, в то время как сам угол поворота φ является скаляром, бесконечно малый поворот dφ - векторная величина, направление которой определяется по правилу правой руки, или буравчика, и связано с осью вращения. Если вращение является равномерным, то ω =const и точка на окружности поворачивается на равные углы вокруг оси вращения за равные времена. Время, за которое она совершает полный оборот, т.е. поворачивается на угол 2π, называется периодом движения Т. Выражение (1.15) можно проинтегрировать в пределах от нуля до Т и получить угловую частоту

. (1.16)

Число оборотов в единицу времени есть величина, обратная периоду, - циклическая частота вращения

ν =1/ T . (1.17)

Нетрудно получить связь между угловой и линейной скоростью точки. При движении по окружности элемент дуги связан с бесконечно малым поворотом соотношением dS = R·dφ. Подставив его в (1.15), находим

v = ω r . (1.18)

Формула (1.18) связывает величины угловой и линейной скоростей. Соотношение, связывающее векторы ω и v , следует из рис. А именно, вектор линейной скорости представляет собой векторное произведение вектора угловой скорости и радиуса-вектора точки r:

. (1.19)

Таким образом, вектор угловой скорости направлен по оси вращения точки и определяется по правилу правой руки или буравчика.

Угловое ускорение - производная по времени от вектора угловой скорости ω (соответственно вторая производная по времени от угла поворота)

Выразим тангенциальное и нормальное ускорение через угловые скорости и ускорение. Используя связь (1.18),(1.12) и (1.13), получаем

a t = β · R , a = ω 2 · R . (1.20)

Таким образом, для полного ускорения имеем

. (1.21)

Величина β играет роль тангенциального ускорения: если β = 0.полное ускорение при вращении точки не равно нулю, a =R·ω 2 ≠ 0.

3. Динамика поступательного движения. Законы Ньютона. (Савельев И.В. Т.1 § 7, 9, 11). Основные физические величины и их размерности. (Савельев И.В. Т.1 § 10). Виды сил в механике. (Савельев И.В. Т.1 § 13–16).

При движении тел их скорости обычно меняются либо по модулю, либо по направлению, либо же одновременно как по модулю, так и по направлению.

Если бросить камень под углом к горизонту, то его скорость будет меняться и по модулю, и по направлению.

Изменение скорости тела может происходить как очень быстро (движение пули в канале ствола при выстреле из винтовки), так и сравнительно медленно (движение поезда при его отправлении). Чтобы уметь находить скорость в любой момент времени, необходимо ввести величину, характеризующую быстроту изменения скорости. Эту величину называют ускорением .

– это отношение изменения скорости к промежутку времени, за который это изменении произошло. Определить среднее ускорение можно формулой:

где – вектор ускорения .

Направление вектора ускорения совпадает с направлением изменения скорости Δ = - 0 (здесь 0 – это начальная скорость, то есть скорость, с которой тело начало ускоряться).

В момент времени t1 (см. рис 1.8) тело имеет скорость 0 . В момент времени t2 тело имеет скорость. Согласно правилу вычитания векторов найдём вектор изменения скорости Δ = - 0 . Тогда определить ускорение можно так:


Рис. 1.8. Среднее ускорение.

В СИ единица ускорения – это 1 метр в секунду за секунду (или метр на секунду в квадрате), то есть

Метр на секунду в квадрате равен ускорению прямолинейно движущейся точки, при котором за одну секунду скорость этой точки увеличивается на 1 м/с. Иными словами, ускорение определяет, насколько изменяется скорость тела за одну секунду. Например, если ускорение равно 5 м/с 2 , то это означает, что скорость тела каждую секунду увеличивается на 5 м/с.