Начало работы с Arduino в Windows. Arduino – распиновка и схема подключения Первое подключение ардуино к компьютеру

Данный документ разъясняет, как подключить плату Arduino к компьютеру и загрузить ваш первый скетч.

Необходимое железо — Arduino и USB-кабель

В этом руководстве предполагается, что вы используете Arduino Uno, Arduino Duemilanove, Nano или Diecimila.

Вам потребуется также кабель стандарта USB (с разъемами типа USB-A и USB-B): такой, каким, к примеру, подключается USB-принтер. (Для Arduino Nano вам потребуется вместо этого кабель с разъемами А и мини-В).

Программа - среда разработки для Arduino

Найдите последнюю версию на странице скачивания .

После окончания загрузки распакуйте скачанный файл. Убедитесь, что не нарушена структура папок. Откройте папку двойным кликом на ней. В ней должны быть несколько файлов и подкаталогов.

Подсоедините плату

Arduino Uno, Mega, Duemilanove и Arduino Nano получают питание автоматически от любого USB-подключения к компьютеру или другому источнику питания. При использовании Arduino Diecimila убедитесь, что плата сконфигурирована для получения питания через USB-подключение. Источник питания выбирается с помощью маленького пластикового джампера, надетого на два из трех штырьков между разъемами USB и питания. Проверьте, чтобы он был установлен на два штырька, ближайших к разъему USB.

Подсоедините плату Arduino к вашему компьютеру, используя USB-кабель. Должен загореться зеленый светодиод питания, помеченный PWR.

Установите драйвера

Установка драйверов для на Windows7, Vista или XP:

  • Подключите вашу плату и подождите, пока Windows начнет процесс установки драйвера. Через некоторое время, несмотря на все её попытки, процесс закончится безрезультатно.
  • Нажмите на кнопку ПУСК и откройте Панель управления.
  • В панели управления перейдите на вкладку Система и безопасность (System and Security). Затем выберите Система. Когда откроется окно Система, выберите Диспетчер устройств (Device Manager).
  • Обратите внимание на порты (COM и LPT). Вы увидите открытый порт под названием «Arduino UNO (COMxx)».
  • Щелкните на названии «Arduino UNO (COMxx)» правой кнопкой мышки и выберите опцию «Обновить драйвер» (Update Driver Software).
  • Кликните "Browse my computer for Driver software".
  • Для завершения найдите и выберите файл драйвера для Uno - «ArduinoUNO.inf», расположенный в папке Drivers программного обеспечения для Arduino (не в подкаталоге «FTDI USB Drivers»).
  • На этом Windows закончит установку драйвера.
Выберите ваш последовательный порт

Выберите устройство последовательной передачи платы Arduino из меню Tools | Serial Port. Вероятно, это будет COM3 или выше (COM1 и COM2 обычно резервируются для аппаратных COM-портов). Чтобы найти нужный порт, вы можете отсоединить плату Arduino и повторно открыть меню; пункт, который исчез, и будет портом платы Arduino. Вновь подсоедините плату и выберите последовательный порт.

Загрузите скетч в Arduino

Теперь просто нажмите кнопку «Upload» в программе - среде разработки. Подождите несколько секунд - вы увидите мигание светодиодов RX и TX на плате. В случае успешной загрузки в строке состояния появится сообщение «Done uploading (Загрузка выполнена)».
(Замечание. Если у вас Arduino Mini, NG или другая плата, вам необходимо физически кнопкой подать команду reset непосредственно перед нажатием кнопки «Upload»).

Несколько секунд спустя после окончания загрузки вы увидите как светодиод вывода 13 (L) на плате начнет мигать оранжевым цветом. Поздравляю, если это так! Вы получили готовый к работе Arduino!

Вы стали счастливым обладателем платы Arduino. Что же делать дальше? А дальше нужно подружить Arduino с компьютером. Мы рассмотрим начало работы с Arduino Uno в операционной системе Windows.

1. Установка Arduino IDE

Для начала нужно установить на компьютер интегрированную среду разработки Arduino - Arduino IDE.

Установка Arduino IDE с помощью инсталлятора избавит вас от большинства потенциальных проблем с драйверами и программным окружением.

2. Запуск Arduino IDE

После того как вы загрузили и установили Arduino IDE, давайте запустим её!

Перед нами окно Arduino IDE. Обратите внимание - мы ещё не подключали нашу плату Arduino Uno к компьютеру, а в правом нижнем углу уже красуется надпись «Arduino Uno on COM1». Таким образом Arduino IDE сообщает нам, что в данный момент она настроена на работу с целевой платой Arduino Uno. А когда придёт время, Arduino IDE будет искать Arduino Uno на порту COM1.

Позже мы поменяем эти настройки.

Что-то пошло не так?

    Arduino IDE не запускается? Вероятно на компьютере некорректно установлена JRE (Java Runtime Environment). Обратитесь к пункту (1) для переустановки Arduino IDE: инсталлятор сделает всю работу по развёртыванию JRE.

3. Подключение Arduino к компьютеру

После установки Arduino IDE пришло время подключить Arduino Uno к компьютеру.

Соедините Arduino Uno с компьютером через USB-кабель. Вы увидите, как на плате загорится светодиод «ON», и начнёт мигать светодиод «L». Это означает, что на плату подано питание, и микроконтроллер Arduino Uno начал выполнять прошитую на заводе программу «Blink» (мигание светодиодом).

Чтобы настроить Arduino IDE на работу с Arduino Uno, нам необходимо узнать, какой номер COM-порта присвоил компьютер Arduino Uno. Для этого нужно зайти в «Диспетчер устройств» Windows и раскрыть вкладку «Порты (COM и LPT)». Мы должны увидеть следующую картину:

Это означает, что операционная система распознала нашу плату Arduino Uno как COM-порт, подобрала для неё правильный драйвер и назначила этому COM-порту номер 7. Если мы подключим к компьютеру другую плату Arduino, то операционная система назначит ей другой номер. Поэтому, если у вас несколько плат Arduino, очень важно не запутаться в номерах COM-портов.

Что-то пошло не так?

4. Настройка Arduino IDE на работу с Arduino Uno

Теперь нам необходимо сообщить Arduino IDE, что плата, с которой ей предстоит общаться, находится на COM-порту «COM7».

Для этого переходим в меню «Сервис» → «Последовательный порт» и выбираем порт «COM7». Теперь Arduino IDE знает - что-то находится на порту «COM7». И с этим «чем-то» ей вскоре предстоит общаться.

Чтобы у Arduino IDE не осталось никаких сомнений, необходимо прямо указать: «Мы будем использовать Arduino Uno!». Для этого переходим в меню «Сервис» → «Плата» и выбираем нашу «Arduino Uno».

Что-то пошло не так?

    Список последовательных портов пуст? Значит Arduino Uno некорректно подключена. Вернитесь к пункту (3), чтобы отладить соединение.

    Arduino IDE невероятно тормозит при навигации по меню? Отключите в диспетчере устройств все внешние устройства типа «Bluetooth Serial». Например, виртуальное устройство для соединения с мобильным телефоном по Bluetooth может вызвать такое поведение.

Среда настроена, плата подключена. Теперь можно переходить к загрузке скетча.

Arduino IDE содержит очень много готовых примеров, в которых можно быстро подсмотреть решение какой-либо задачи. Есть в ней и простой пример «Blink». Давайте выберем его.

Немного модифицируем код, чтобы увидеть разницу с заводским миганием светодиода.

Вместо строчки:

Delay(1000 ) ;

Delay(100 ) ;

Полная версия кода:

/* Blink Turns on an LED on for one second, then off for one second, repeatedly. This example code is in the public domain. */ // Pin 13 has an LED connected on most Arduino boards. // give it a name: int led = 13 ; // the setup routine runs once when you press reset: void setup() { // initialize the digital pin as an output. pinMode(led, OUTPUT) ; } // the loop routine runs over and over again forever: void loop() { digitalWrite(led, HIGH) ; // turn the LED on (HIGH is the voltage level) delay(100 ) ; // wait for a second digitalWrite(led, LOW) ; // turn the LED off by making the voltage LOW delay(100 ) ; // wait for a second }

Теперь светодиод «L» должен загораться и гаснуть на десятую часть секунды. То есть в 10 раз быстрее, чем в заводской версии.

Загрузим наш скетч в Arduino Uno и проверим, так ли это? После загрузки светодиод начнёт мигать быстрее. Это значит, что всё получилось. Теперь можно смело переходить к «Экспериментам »

Что-то пошло не так?

    В результате загрузки появляется ошибка вида avrdude: stk500_get sync(): not in sync: resp = 0x00 ? Это значит, что Arduino настроена некорректно. Вернитесь к предыдущим пунктам, чтобы убедиться в том, что устройство было распознано операционной системой и в Arduino IDE установлены правильные настройки для COM-порта и модели платы.

Изучение микроконтроллеров кажется чем-то сложным и непонятным? До появления Арудино - это было действительно не легко и требовало определенный набор программаторов и прочего оборудования.

Это своего рода электронный конструктор. Изначальная задача проекта - это позволить людям легко обучаться программированию электронных устройств, при этом уделяя минимальное время электронной части.

Сборка сложнейших схем и соединение плат может осуществляться без паяльника, а с помощью перемычек с разъёмными соединениями «папа» и «мама». Так могут подключаться как навесные элементы, так и платы расширения, которые на лексиконе ардуинщиков зовут просто «Шилды» (shield).

Какую первую плату Arduino купить новичку?

Базовой и самой популярной платой считается . Эта плата размером напоминает кредитную карту. Довольно крупная. Большинство шилдов которые есть в продаже идеально подходят к ней. На плате для подключения внешних устройств расположены гнезда.

В отечественных магазинах на 2017 год её цена порядка 4-5 долларов. На современных моделях её сердцем является Atmega328.

Изображение платы ардуино и расшифровка функций каждого вывода, Arduino UNO pinout

Микроконтроллер на данной плате это длинна микросхема в корпусе DIP28, что говорит о том, что у него 28 ножек.

Следующая по популярности плата, стоит почти в двое дешевле предыдущей - 2-3 доллара. Это плата . Актуальные платы построены том же Atmega328, функционально они аналогичны с UNO, различия в размерах и решении согласования с USB, об этом позже подробнее. Еще одним отличием является то, что для подключения к плате устройств предусмотрены штекера, в виде иголок.

Количество пинов (ножек) этой платы совпадает, но вы можете наблюдать что микроконтроллер выполнен в более компактном корпусе TQFP32, в корпусе добавлены ADC6 и ADC7, другие две «лишних» ножки дублируют шину питания. Её размеры довольно компактные - примерно, как большой палец вашей руки.

Третья по популярности плата - это , на ней нет USB порта для подключения к компьютеру, как осуществляется связь я расскажу немного позже.

Это самая маленькая плата из всех рассмотренных, в остальном она аналогична предыдущим двум, а её сердцем является по-прежнему Atmega328. Другие платы рассматривать не будем, так как это статья для начинающих, да и сравнение плат - это тема отдельной статьи.

В верхней части схема подключения USB-UART, пин «GRN» - разведен на цепь сброса микроконтроллера, может называться по иному, для чего это нужно вы узнаете далее.

Если UNO удобна для макетирования, то Nano и Pro Mini удобны для финальных версий вашего проекта, потому что занимают мало места.

Как подключить Arduino к компьютеру?

Arduino Uno и Nano подключаются к компьютеру по USB. При этом нет аппаратной поддержки USB порта, здесь применено схемное решение преобразования уровней, обычно называемое USB-to-Serial или USB-UART (rs-232). При этом в микроконтроллер прошит специальный Arduino загрузчик, который позволяет прошиваться по этим шинам.

В Arduino Uno реализована эта вязь на микроконтроллере с поддержкой USB - ATmega16U2 (AT16U2). Получается такая ситуация, что дополнительный микроконтроллер на плате нужен для прошивки основного микроконтроллера.

В Arduino Nano это реализовано микросхемой FT232R, или её аналогом CH340. Это не микроконтроллер — это преобразователь уровней, этот факт облегчает сборку Arduino Nano с нуля своими руками.

Обычно драйвера устанавливаются автоматически при подключении платы Arduino. Однако, когда я купил китайскую копию Arduino Nano, устройство было опознано, но оно не работало, на преобразователе была наклеена круглая наклейка с данными о дате выпуска, не знаю нарочно ли это было сделано, но отклеив её я увидел маркировку CH340.

До этого я не сталкивался с таким и думал, что все USB-UART преобразователи собраны на FT232, пришлось скачать драйвера, их очень легко найти по запросу «Arduino ch340 драйвера». После простой установки - всё заработало!

Через этот же USB порт может и питаться микроконтроллер, т.е. если вы подключите его к адаптеру от мобильного телефона - ваша система будет работать.

Что делать если на моей плате нет USB?

Плата Arduino Pro Mini имеет меньшие габариты. Это достигли тем что убрали USB разъём для прошивки и тот самый USB-UART преобразователь. Поэтому его нужно докупить отдельно. Простейший преобразователь на CH340 (самый дешевый), CPL2102 и FT232R, продаётся стоит от 1 доллара.

При покупке обратите внимание на какое напряжение рассчитан этот переходник. Pro mini бывает в версиях 3.3 и 5 В, на преобразователях часто расположен джампер для переключения напряжения питания.

При прошивке Pro Mini, непосредственно перед её началом необходимо нажимать на RESET, однако в преобразователях с DTR это делать не нужно, схема подключения на рисунке ниже.

Стыкуются они специальными клеммами «Мама-Мама» (female-female).

Собственно, все соединения можно сделать с помощью таких клемм (Dupont), они бывают как с двух сторон с гнездами, так и со штекерами, так и с одной стороны гнездо, а с другой штекер.

Как писать программы для Arduino?

Для работы со скетчами (название прошивки на языке ардуинщиков), есть специальная интегрированная среда для разработки Arduino IDE, скачать бесплатно её можно с официального сайта или с любого тематического ресурса, с установкой проблем обычно не возникает.

Так выглядит интерфейс программы. Писать программы можно на специально разработанном для ардуино упрощенном языке C AVR, по сути это набор библиотек, который называют Wiring, а также на чистом C AVR. Использование которого облегчает код и ускоряет его работу.

В верхней части окна присутствует привычное меню, где можно открыть файл, настройки, выбрать плату, с которой вы работаете (Uno, Nano и много-много других) а также открыть проекты с готовыми примерами кода. Ниже расположен набор кнопок для работы с прошивкой, назначение клавиш вы увидите на рисунке ниже.

В нижней части окна - область для вывода информации о проекте, о состоянии кода, прошивки и наличии ошибок.

Основы программирования в Arduino IDE

В начале кода нужно объявить переменные и подключить дополнительные библиотеки, если они имеются, делается это следующим образом:

#include biblioteka.h; // подключаем библиотеку с названием “Biblioteka.h”

#define peremennaya 1234; // Объявляем переменную со значением 1234

Команда Define дают компилятору самому выбрать тип переменной, но вы можете его задать вручную, например, целочисленный int, или с плавающей точкой float.

int led = 13; // создали переменную “led” и присвоили ей значение «13»

Программа может определять состояние пина, как 1 или 0. 1 -это логическая единица, если пин 13 равен 1, то напряжение на его физической ножке будет равняться напряжению питания микроконтроллера (для ардуино UNO и Nano - 5 В)

Запись цифрового сигнала осуществляется командой digitalWrite (пин, значение), например:

digitalWrite(led, high); //запись единицы в пин 13(мы его объявили выше) лог. Единицы.

Как вы могли понять обращение к портам идёт по нумерации на плате, соответствующей цифрой. Вот пример аналогичного предыдущему коду:

digitalWrite (13, high); // устанавливаем вывод 13 в едиицу

Часто востребованная функция задержки времени вызывается командой delay(), значение которой задаётся в миллисекундах, микросекунды достигаются с помощью

delayMicroseconds() Delay (1000); //микроконтроллер будет ждать 1000 мс (1 секунду)

Настройки портов на вход и выход задаются в функции void setup{}, командой:

pinMode(NOMERPORTA, OUTPUT/INPUT); // аргументы - название переменной или номер порта, вход или выход на выбор

Понимаем первую программу «Blink»

В качестве своеобразного «Hello, world» для микроконтроллеров является программа мигания светодиодом, давайте разберем её код:

В начале командой pinMode мы сказали микроконтроллеру назначить порт со светодиодом на выход. Вы уже заметили, что в коде нет объявления переменной “LED_BUILTIN”, дело в том, что в платах Uno, Nano и других с завода к 13 выводу подключен встроенный светодиод и он распаян на плате. Он может быть использован вами для индикации в ваших проектах или для простейшей проверки ваших программ-мигалок.

Далее мы установили вывод к которому подпаян светодиод в единицу (5 В), следующая строка заставляет МК подождать 1 секунду, а затем устанавливает пин LED_BUILTIN в значение нуля, ждет секунду и программа повторяется по кругу, таким образом, когда LED_BUILTIN равен 1 - светодиод(да и любая другая нагрузка подключенная к порту) включен, когда в 0 - выключен.

Читаем значение с аналогового порта и используем прочитанные данные

Микроконтроллер AVR Atmega328 имеет встроенный 10 битный аналогово цифровой преобразователь. 10 битный АЦП позволяет считывать значение напряжение от 0 до 5 вольт, с шагом в 1/1024 от всего размаха амплитуды сигнала (5 В).

Чтобы было понятнее рассмотрим ситуацию, допустим значение напряжения на аналоговом входе 2.5 В, значит микроконтроллер прочитает значение с пина «512», если напряжение равно 0 - «0», а если 5 В - (1023). 1023 - потому что счёт идёт с 0, т.е. 0, 1, 2, 3 и т.д. до 1023 - всего 1024 значения.

Вот как это выглядит в коде, на примере стандартного скетча «analogInput»

int sensorPin = A0;

int ledPin = 13;

int sensorValue = 0;

pinMode(ledPin, OUTPUT);

sensorValue = analogRead(sensorPin);

digitalWrite(ledPin, HIGH);

delay(sensorValue);

digitalWrite(ledPin, LOW);

delay(sensorValue);

Объявляем переменные:

    Ledpin - самостоятельно назначаем пин со встроенным светодиодом на выход и даём индивидуальное имя;

    sensorPin - аналоговый вход, задаётся соответственно маркировке на плате: A0, A1, A2 и т.д.;

    sensorValue - переменная для хранения целочисленного прочитанного значения и дальнейшей работы с ним.

Код работает так: sensorValue сохраняем прочитанное с sensorPin аналоговое значение (команда analogRead). - здесь работа с аналоговым сигналом заканчивается, дальше всё как в предыдущем примере.

Записываем единицу в ledPin, светодиод включается и ждем время равное значению sensorValue, т.е. от 0 до 1023 миллисекунд. Выключаем светодиод и снова ждем этот период времени, после чего код повторяется.

Таким образом положением потенциометра мы задаем частоту миганий светодиода.

Функция map для Арудино

Не все функции для исполнительных механизмов (мне ни одной не известно) в качестве аргумента поддерживают «1023», например, сервопривод ограничен углом поворота, т.е на пол оборотоа (180 градуов) (пол оборота) сервомоторчика максимальный аргумент функции равен «180»

Теперь о синтаксисе: map (значение которое мы переводим, минимальная величина входного, максимальная величина входного, минимальная выходного, максимальная выходного значения).

В коде это выглядит так:

(map(analogRead(pot), 0, 1023, 0, 180));

Мы считываем значение с потенциометра (analogRead(pot))от 0 до 1023, а на выходе получаем числа от 0 до 180

Значения карты величин:

На практике применим это к работе коду того-же сервопривода, взгляните на код с Arduino IDE, если вы внимательно читали предыдущие разделы, то он пояснений не требует.

И схема подключения.

Выводы Ардуино - очень удобное средство для обучения работы с микроконтроллерами. А если использовать чистый C AVR, или как его иногда называют «Pure C» - вы значительно уменьшите вес кода, и его больше поместиться в память микроконтроллера, в результате вы получите отличную отладочную плату заводского исполнения с возможностью прошивки по USB.

Мне нравится ардуино. Жаль, что её многие опытные программисты микроконтроллеров безосновательно ругают, что она слишком упрощена. Упрощен, в принципе, только язык, но никто не заставляет пользоваться именно им, плюс вы можете прошить микроконтроллер через ICSP разъём, и залить туда тот код, который вам хочется, без всяких ненужных Вам бутлоадеров.

Для тех, кто хочет проиграться с электроникой, как продвинутый конструктор - отлично подойдёт, а для опытных программистов как плата, не требующая сборки, тоже станет полезной!

Еще больше информации про Ардуино и особенности его использования в различных схемах смотрите в электронной книге - .

Arduino — это полноценная система, позволяющая управлять различными системами и считывать данные из разных источников. Основным преимуществом Arduino — это стандартизированное распределение выводов, позволяющее применять готовые к использованию решения, расширяющие возможности системы.

Используя специальные платы, называемые шилдами (Shield) можно расширить возможности Arduino подключив, например, сетевую карту, драйвер для управления шаговым двигателем или датчик расстояния. Со стороны программы каждый вывод схемы четко определен, что в свою очередь позволяет легко создавать собственные макеты на основе примеров, доступных в интернете.

На рисунке ниже приведены платы Arduino UNO и Arduino MEGA:

Arduino MEGA совместима с версией UNO в области основных выводов. Дополнительные выводы MEGA расположены отдельно, что позволяет сохранить совместимость с Arduino UNO.

Рядом с USB разъемом есть кнопка «RESET». Он позволяет вернуться к исходному состоянию программы, которое бывает при включении питания. После нажатия кнопки «RESET» данные в ОЗУ микроконтроллера сбрасываются и Arduino начинает выполнять программу с самого начала.

Интерфейс USB позволяет программировать Arduino и взаимодействовать и поддерживать связь с Serial монитором. Кроме того, непосредственно через USB вы можете запитать плату.

Следует, однако, помнить, что USB имеет небольшую выходную мощность и не может обеспечить должным питанием элементы, требующие большей мощности, такие как двигатели постоянного тока, шаговые двигатели или сервоприводы. Решить эту проблему можно применив мощный внешний источник питания.

Для этого в Arduino имеет разъем для подключения внешнего источника питания. Напряжение питания может составлять от 5 до 20 В. Фактически, оптимальное напряжение должно находиться в диапазоне 7-12 В.

Если напряжение питания будет меньше 7В, то напряжение на выходе встроенного стабилизатора будет меньше 5 В. Если же входное напряжение питания будет больше 12 В, то это приведет к значительному нагреву стабилизатора напряжения.

Применение внешнего источника питания имеет смысл тогда, когда для части системы требуется напряжение питания более 5 В и достаточно высокая сила тока или когда Arduino работает автономно от компьютера. При использовании же внешних элементов с низким энергопотреблением, безусловно, удобнее запитать схему непосредственно от USB порта.

Arduino оснащена одним или двумя шестиконтактными разъемами, которые используются для программирования микроконтроллера. Разъемы обозначаются как ICSP1 и ICSP2. Разъем ближе к основному микроконтроллеру позволяет загружать BOOTLOADER, а разъем ближе к USB-порту позволяет загружать программу USB-UART преобразователя. Второй разъем используется только в платах Arduino, где в качестве USB-UART преобразователя используется микроконтроллер Atmega. Если установлен FT232, то второй разъем на плате отсутствует.

Плата Arduino оснащена группой, по крайней мере, из 4 светодиодов. Два из них помечены как «RX» и «TX» расположены рядом с микросхемой FT232 или Atmega. Они сигнализируют о последовательной передаче данных между компьютером и контроллером. Эти светодиоды полезны при программировании и тестировании программы, которая взаимодействует с компьютером. По их свечению вы можете визуально определить, происходит ли передача данных (программирование) или нет.

Еще один светодиод, обозначенный как «ON», является индикатором питания платы. Последний светодиод, как правило, — это светодиод, анод которого подключен к выводу 13, а катод к минусу питания. Поэтому высокий логический уровень на выводе 13 приведет к включению светодиода, в то время как низкий уровень приведет к его выключению.

Последним и самым важным элементом платы Arduino являются два ряда контактов сверху и снизу. Их расположение является стандартным, что облегчает повторение готовых проектов и добавление шилдов. Нижний ряд контактов разделен на две части.

Левая часть (POWER) обеспечивает доступ к питанию и управлению:

  • IOREF — указывает каким напряжением питается процессор Arduino (это важно для некоторых шилдов)
  • RESET — сброс Arduino
  • 3V3 – система питание модулей, требующих 3,3 В
  • 5V — система питания TTL
  • GND – масса
  • GND — масса
  • VIN — напряжение питания от внешнего источника

Правая часть (ANALOG IN) обеспечивает считывание аналоговые сигналов. Аналого-цифровой преобразователь (АЦП) позволяет считывать значения напряжения от 0 до AREF или 0…5 В.

Считанное значение может быть 8-битным или 10-битным. Аналоговые входы подписаны как A0, A1, A2, A3, A4, A5. Несмотря на их основное предназначение, выводы A0 — A5 так же могут быть использованы как цифровые входы или выходы.

Верхний ряд контактов также разделен на две части. Правая часть пронумерована от 0 до 7, левая от 8 до 13. Этот ряд содержит контакты цифрового входа/выхода.

Контакты 0 и 1 являются специальными выводами, на которые дополнительно выведены линии последовательного порта (RX и TX). Их можно использовать для последовательной связи с другой платой.

Контакты 3, 5, 6, 9, 10, 11 обозначаются как «~» или PWM. Они могут работать в режиме ШИМ, иногда называемым аналоговым выходом. Конечно же, это не реальные аналоговые выходы. Они только позволяют контролировать ширину импульса, которая часто используется в цифровой электронике для изменения «аналогового» сигнала.

И последние два вывода — это GND и AREF, которые используется для подключения внешнего опорного напряжения для аналого-цифрового преобразователя.

В итоге Arduino UNO имеет 14 цифровых линий входа/выхода и 6 аналоговых входов (которые могут служить в качестве цифровых входов/выходов).

Следует отметить, что в Arduino с электрической точки зрения важными являются такие параметры, как допустимое напряжение, подаваемое на вход и нагрузочная способность выходов.

Допустимое входное напряжение не должно превышать 5В или 3,3В (у плат с питанием от 3,3В). В случае если необходимо обработать сигнал напряжением больше 5В (3,3В для Arduino Pro Mini), то следует воспользоваться .

Нагрузочная способность выходов при питании от 5 В составляет 40мА, при питании от 3,3 В — 50 мА. Это означает, что к одному выходному контакту можно подключить, например, до двух светодиодов, предполагая, что рабочий ток каждого из них составляет 20 мА.

В тех случаях, когда контроллер должен управлять элементом с большим током потребления, то необходимо использовать промежуточные компоненты (транзистор, реле, симистор, драйвер).

Приветствую друзья! Сегодня опять хочу затронуть тему Arduino и немного рассказать про первое подключение контроллера к компьютеру. Когда я стал счастливым обладателем Arduino UNO, мне конечно же не терпелось быстрее его подключить и опробовать некоторые его возможности. В интернете очень много информации о подключении Arduino, но многие из них не говорили про одну особенность Китайских клонов, обладателем которого я и являлся. Важная особенность этих клонов в том что преобразование интерфейса USB в UART происходит при помощи чипа CH340G, а в оригинальных Arduino преобразователем является чип ATmega16U2, и драйвера для него идут в комплекте с Arduino IDE (Среда разработки микроконтроллеров Arduino ) Как вы наверное уже успели догадаться для китайцев нужен отдельный драйвер. На то что бы понять все эти нюансы у меня ушло 2-3 дня.

Первым делом нужно скачать и установить среду разработки Arduino, для это идём на официальный сайт нажимаем Just download и скачиваем последнею версию Arduino IDE.

Загрузили? Тогда запускаем.exe файл инсталлятора. Думаю объяснять как устанавливать приложения вам не нужно, если вы интересуетесь этой статьёй ваш навык владения компьютером выше этого. Если же нет то (это сугубо моё мнение) я думаю что для начала вам нужно освоить уверенное пользование вашим ПК а уже потом вернуться к этой теме. В процессе установки всплывёт несколько окон с запросом установки драйверов, соглашаемся и продолжаем установку.

Завершив установку подключаем контроллер в свободный USB порт компьютера, для этого нам понадобится кабель USB-A/USB-B

Далее идём в диспетчер устройств, и смотрим на такую картину. Контроллер определился как USB2.0-Serial и помечен восклицательным знаком. Это говорит нам о том что для данного устройства не установлены драйвера.

Драйвер преобразователя CH340G о котором я писал выше можете скачать . Устанавливаем его и смотрим что изменилось в диспетчере устройств. В ветке Порты (COM и LPT) определилось новое устройство USB-SERIAL CH340 на 3COM порту. У вас номер порта может быть другой, запоминаем его он нам ещё пригодится.

Запускаем Arduino IDE и переходим на вкладку Инструменты в графе Плата: выбираем тип контроллера, у меня Arduino UNO что соответственно я и делаю. Ниже в графе Порт: выбираем порт к которому подключен наш контроллер.

На этом этап установки и настройки закончен, наш контроллер полностью готов к работе и мы можем залить в него первый скетч, а как это сделать вы можете прочитать . Спасибо что потратили время и дочитали статью до конца, до скорых встреч!