4 ядра с тактовой частотой

IBM создала процессор с мощностью суперкомпьютера. Процессор Cell на основе архитектуры Power до 10 раз мощнее самого последнего процессора для PC. Очень скоро Cell произведет революцию во всех в областях, от бытовой электроники и рентгенографии до аэрокосмической промышленности.
Cell - это прорыв в архитектурном проектировании; восемь синергетических процессоров и ядро на основе архитектуры Power обеспечивают непревзойденную производительность во многих приложениях, которым до этого не хватало вычислительной мощности.
Предварительные испытания оборудования показали, что он способен работать с тактовой частотой более 4 ГГц.

Процессор с мощностью суперкомпьютера Совместно с компаниями Sony Group и Toshiba, специалисты IBM разработали весьма перспективную микросхему. Инновационный процессор получил название Cell, это первая открытая платформа для вычислительных и игровых программ следующего поколения. "Процессор с мощностью суперкомпьютера" - такое название он получил благодаря своей мощности.
Разработки ведутся с 2001 года, именно тогда было объявлено о запуске проекта. "Мы поставили перед собой весьма амбициозную задачу. Новый высокоинтегрированный микропроцессор должен справляться с грядущим масштабированием транзисторов, а также с ограничениями мощности и производительности современных технологий", - говорит д-р Джон Келли III (John E. Kelly III), старший вице-президент IBM. Разработка Создание технологии в лаборатории - это одно дело, вывод на коммерческий рынок - совсем другое. Новые услуги IBM по проектированию должны помочь компаниям интегрировать технологию новых микропроцессоров в производство широкого круга электронных товаров, особенно в тех областях, где существенную роль играют изображения, например, в авиакосмической и оборонной сфере, в промышленных и медицинских сегментах рынка.
"С новыми услугами IBM по проектированию число приложений, выигрывающих от уникальных возможностей Cell, значительно вырастет", - говорит Пэт Тул (Pat Toole), генеральный управляющий подразделения Engineering&Technology Services компании IBM. Центр IBM Deep Computing Capacity on Demand в Покипси, штат Нью-Йорк, обеспечит клиентам, использующим эти новые услуги, доступ к среде программного моделирования Cell.
"Это пример того, как IBM разрабатывает инновации «по требованию», как помогает производителям в различных отраслях промышленности решать наиболее сложные технические задачи и создавать совершенно новые продукты", - добавляет Тул. Мощность внутри Cell - это прорыв в архитектурном проектировании; восемь синергетических процессоров и ядро на основе архитектуры Power обеспечивают непревзойденную производительность во многих приложениях, которым до этого не хватало вычислительной мощности. Предварительные испытания оборудования показали, что он способен работать с тактовой частотой более 4 ГГц.
С приходом Cell повысится производительность приложений и улучшатся характеристики элементов плат, которые будут использоваться в области цифрового оборудования, таких как кинооборудование и другие развлекательные системы для дома. Кроме этого, ожидается, что Cell найдет применение в правительственных лабораториях, цифровых системах безопасности, сфере высшего образования и объемных вычислениях. "Это должно вызвать новую волну роста в данной отрасли," - говорит Джеймс Кейл, знаменитый разработчик, координировавший создание Cell. - "Этот процессор обеспечит производительность, недостижимую для любой другой архитектуры".
Говоря о "погружении в виртуальную среду", Кейл подразумевает такое трехмерное моделирование, когда, посмотрев на улицу на экране, мы вдруг понимаем, что она практически не отличается от настоящей, например, в центре Парижа. "Люди будут совершенно по-новому общаться с компьютерами и между собой! Мы смешаем действительность и виртуальную реальность". На рынке Процессор Cell появится на рынке в 2006 году: компания Sony Corporation планирует выпустить на базе Cell домашние серверы для широкополосного доступа, а также телевизионные системы высокой четкости (HDTV);
Sony Computer Entertainment Inc. планирует выпустить на базе Cell компьютерную игровую систему следующего поколения, которая произведет революцию в области компьютерных развлечений;
Toshiba Corporation рассматривает различные варианты использования Cell и планирует выпустить первый продукт на его базе - телевизор высокой четкости (HDTV). "С появлением Cell существенно увеличится производительность широкополосных приложений. Работать и с такой домашней техникой, и в высокоинформационных системах связи станет проще", - говорит Масаси Муромати (Masashi Muromachi), вице-президент Toshiba Corporation, президент и исполнительный директор Toshiba Semiconductor Company.

Новые "весенние" процессоры продолжают радовать нас своим появлением. На этот раз отличилась компания Intel, представившая на украинском рынке сразу два топовых процессора Pentium 4 c частотой 3,4 GHz, однако построенных на различных ядрах — Northwood и Prescott соответственно. Надеемся, данный обзор поможет определиться с тем, что же способны дать пользователю такие похожие и вместе с тем настолько разные CPU.
На сей раз мы решили не делать громоздкий материал, тем более что совсем недавно
уже рассматривали детально предыдущие поколения этих процессоров с частотами 3,2
GHz. С особенностями ядра Northwood наверняка знакомо большинство читателей нашего
издания, следовательно, изменения в производительности при переходе на новую частоту
3,4 GHz можно просчитать даже на калькуляторе, имея необходимую базу предыдущих
результатов тестирования. Но конструктив процессора несколько обновился. Основное
(внешнее) изменение коснулось элементов питания самого кристалла. Как известно,
на тыльной стороне процессорной подложки расположены навесные элементы (в основном
шунтирующие конденсаторы). Так вот, если раньше в 200 (800) MHz серии Northwood
их количество и расположение было одинаковым, то модель 3,4 GHz кардинально отличается
от своих предшественников. Его подложка как две капли воды похожа на Pentium 4
Extreme Edition. Почти двукратное увеличение числа конденсаторов наверняка вызвано
желанием уменьшить всплески и уровень помех, возникающих в цепях питания процессора.
Как оказалось, данные метаморфозы положительно сказались на разгонном потенциале,
но об этом позже.

Prescott также отметился, но в данном случае изменения касаются исключительно
программной части. С технической точки зрения отличий новой модели с частотой
3,4 GHz от 3,2 нам обнаружить не удалось. Так что же это за изменения, которые
позволят новым массовым CPU от Intel показать себя во всей красе?

Конфигурации
тестовых систем
Платформа
Intel
AMD
Процессор Intel Pentium 4 (Prescott) 3,2/3,4E GHz Intel Pentium 4 (Northwood) 3,4C GHz AMD Athlon 64 3400+ 2,2 GHz
Материнская плата Abit IC7-MAX3 (чипсет i875P) ASUS K8V Deluxe (чипсет VIA K8T800)
Память Kingston HyperX PC3500 (2?512
MB)
Видеокарта HIS Radeon 9800XT 256 MB
Жесткий диск Western Digital WD300BB 30
GB 7200 об/мин
ОС Windows XP Professional SP2

Экосистема процессорного ядра Prescott

Пожалуй, одно из значимых достижений
последнего времени — корректное "понимание" Prescott операционной
системой Windows XP с установленным Service Pack 2. До официального выхода этого
"апгрейда" рано говорить о возможных преимуществах и новом уровне
управления технологией Hyper-Threading, но сама тенденция все-таки положительная.
Также в ходе тестирования нами была замечена еще одна интересная особенность
— материнские платы, для которых есть новые версии BIOS с заявленной 100%-ной
совместимостью с ядром Prescott, демонстрируют весьма необычное поведение. Действительно,
после перепрошивки скорость работы с памятью существенно возрастает, а ее латентность
несколько снижается (напомним, в случае установки CPU Prescott). Но если в плату
с новым BIOS установить Northwood, быстродействие подсистемы памяти хоть и незначительно,
но все же упадет. Выводов из всего этого пока два: а) если вы владелец Pentium
4 серий B/C, не спешите обновлять BIOS на своей материнской плате; б) пока рано
говорить о "нюансах" BIOS как о сложившейся закономерности, но тот
факт, что три популярные модели материнских плат все же демонстрируют такой
результат, по крайней мере, заставляет задуматься.

Также отметим медленное внедрение поддержки SSE3 в современное мультимедийное
ПО. Обещанные драйверы от ATI и NVidia пока не появились, а авторы медиакодеков
пока не спешат использовать преимущества SSE3 в своих продуктах. Хотя в Японии
— стране, так любящей высокие технологии, — новый набор команд уже достаточно
интенсивно применяется "национальным" ПО. Нам даже удалось найти результаты
тестирования, где сообщалось о 10%-ном приросте производительности в случае
медиакодирования. Опять-таки, когда "реальность" SSE3 дойдет до нас
— еще неизвестно. Но тот факт, что, по крайней мере, это будет "в плюс",
а не "в минус", уже радует.


Результаты тестирования

Тест Primordia из набора Science Mark 2.0 хоть и косвенно, но свидетельствует
о том, что Prescott не создан для сложной математики. Даже с новой частотой
3,4 GHz он далек от своих конкурентов. А вот Northwood 3,4 GHz доказал, что
при использовании технологии Hyper-Threading его вычислительные способности
практически не уступают Athlon 64 3400+.

Остальные результаты вполне можно рассматривать с точки зрения глобальных закономерностей.
Налицо действительное соответствие рейтинга 3400+ у Athlon 64 2,2 GHz реальной
производительности Pentium 4 (Northwood) 3,4 GHz. При некоторых отклонениях
(Unreal Tournament всегда демонстрировал более высокие результаты на процессорах
AMD, а "мультимедиа" всегда лучше удается CPU от Intel, особенно с
использованием ПО, поддерживающего SMP) мы наблюдаем в принципе схожее быстродействие.
Теперь посмотрим, где же новый 90-нанометровый процессор Intel занял первые
места — архивирование WinRAR, 3DMark 2003, SPECviewperf 7.1.1. Опять-таки примечательно
— если Prescott отстает, то отстает значительно, если лидирует, то тоже весьма
ощутимо. Еще одно подтверждение тому, что новый процессор Intel нельзя однозначно
назвать ни "хорошим", ни "наоборот". Во-первых, пока полностью
не сформировалась та самая экосистема, где он сможет себя проявить на все 100%,
а во-вторых, он просто другой (отличный от всего того, к чему мы так
долго привыкали).

Выводы

После довольно революционного появления семейства AMD64, пошатнувшего
и взбудоражившего IT-общественность, снова наблюдается некоторое спокойствие.
Как показало наше тестирование, новые массовые процессоры Intel Pentium 4 (Northwood)
3,4 GHz и AMD Athlon 64 3400+ 2,2 GHz действительно являются "топовыми"
для обеих компаний и ничем друг другу не уступают, а выбор остается исключительно
за пользователем. Хотя платформа от AMD обойдется покупателю несколько дешевле,
но той разительной разницы, которая была в случае с Athlon XP, уже не будет.
Теперь при желании приобрести новые High-End-системы вне зависимости от производителя
платформы придется заплатить сопоставимые суммы. Ну а посоветовать приобретение
Prescott можно тем, кто хочет стать обладателем передовых технологий, которые
должны проявить себя в будущем. Так сказать, платформа "на вырост".

Но все же выскажем некоторые претензии к Prescott. Заключаются они в слишком
высоком тепловыделении. Даже выполнив все рекомендации касательно циркуляции
воздуха, мы получили в закрытом корпусе около 70 °С на чипе. В случае применения
мощной видеокарты и модулей памяти PC3200 это может привести к тому, что температура
внутри корпуса превысит 50 °С — согласитесь, многовато. Надеемся, что в
будущих степпингах Intel вплотную займется решением данной проблемы, иначе дальнейший
рост частот может оказаться небезопасным.

Разгон

Для серьезного и стабильного разгона новых процессоров от Intel придется
как минимум сменить штатные кулеры на что-то более мощное и добавить в корпус
пару-тройку вентиляторов. CPU с индексом "С" смог стабильно работать
на частоте 3,72 GHz (наверняка сказались дополнительные элементы в цепи питания,
о которых мы говорили вначале). Prescott достиг порога в 3,8 GHz, однако в открытом
корпусе и с кулером Zalman CNPS7000ACu, как нам кажется, достичь более высоких
частот, используя традиционные методы охлаждения, просто не удастся.

Есть в жизни ситуации, которые способны вызвать удивление у любого, пусть даже у самого упёртого скептика. Данный материал можно назвать настоящей сенсацией за последние годы. Новость такова: Intel выпустила двуядерный Pentium D нижнего ценового уровня. Но после небольших модификаций этот процессор способен обойти даже топовые модели.

Сюда входят даже Athlon FX-60 и Pentium Extreme Edition 965. Да, мы уже чувствуем всю горечь разочарования тех пользователей, кто вложился в топовые компьютерные системы. Но давайте познакомимся с нашим сегодняшним героем: процессором Pentium D 805 на частоте 2,66 ГГц с двумя ядрами и 64-битной поддержкой. И этот процессор стоит очень дёшево: купить его можно где-то за $130. Когда мы получили первые результаты производительности, то удивлению не было предела: процессор легко работает на частоте 4,1 ГГц, причём с обычным воздушным охлаждением.

Если вспомнить историю, то удачные примеры разгона "дёшево и сердито" встречались и раньше. Возьмём тот же Intel Celeron 300A, который при штатной частоте 300 МГц легко работал на 450 МГц. При этом в некоторых задачах он начинал обходить намного более дорогой Pentium II 400.


Куда уж дешевле? Intel Pentium D 805 за $130.

Pentium D 805 на первый взгляд кажется рядовым недорогим процессором, но после разгона до 4,1 ГГц ситуация резко меняется. У оверклокеров, ещё недавно восхищавшихся AMD Opteron 144, появился новый лидер разгона: Pentium D 805. При этом разгонять процессор Intel не только легче, но и эффективнее. Связано это с двуядерной архитектурой, ведь у Opteron присутствует только одно ядро.



А так Pentium D 805 выглядит в "Диспетчере устройств".

Pentium D 805 в деталях

Pentium D 805 использует два ядра первого поколения Pentium D, а именно: Smithfield. Предшествующие модели в линейке 8xx работали на тактовых частотах от 2,8 ГГц (D 820) до 3,2 ГГц (D 840). Оба ядра в линейке оснащены 1 Мбайт кэша L2, в то время как у процессоров линейки 9xx кэш увеличен до 2 Мбайт на ядро. За последний год Intel не выпустила новых моделей в линейке 8xx, поскольку компания переключилась с 90-нм техпроцесса на 65-нм. А новый техпроцесс используется только для производства линейки 9xx. Однако в мае старое ядро Smithfield получило новую реинкарнацию в Pentium D 805.





Вид снизу Pentium D 805 для Socket 775.


Процессор Кодовый номер Тактовая частота Кэш L2 Множитель Частота FSB
Pentium EE 965 Два ядра, 3724 МГц 2 Мбайт 14x 266 МГц QDR
Pentium EE 955 Два ядра, 3466 МГц 2 Мбайт 13x 266 МГц QDR
Pentium D 950 Два ядра, 3400 МГц 2 Мбайт 17x 200 МГц QDR
Pentium D 940 Два ядра, 3200 МГц 2 Мбайт 16x 200 МГц QDR
Pentium D 930 Два ядра, 3000 МГц 2 Мбайт 15x 200 МГц QDR
Pentium D 920 Два ядра, 2800 МГц 2 Мбайт 14x 200 МГц QDR
Pentium 4 "E" 661 Одно ядро, 3600 МГц 2 Мбайт 18x 200 МГц QDR
Pentium 4 "E" 651 Одно ядро, 3400 МГц 2 Мбайт 17x 200 МГц QDR
Pentium 4 "E" 641 Одно ядро, 3200 МГц 2 Мбайт 16x 200 МГц QDR
Pentium 4 "E" 631 Одно ядро, 3000 МГц 2 Мбайт 15x 200 МГц QDR
Pentium EE 840 Два ядра, 3200 МГц 1 Мбайт 16x 200 МГц QDR
Pentium D 840 Два ядра, 3200 МГц 1 Мбайт 16x 200 МГц QDR
Pentium D 830 Два ядра, 3000 МГц 1 Мбайт 15x 200 МГц QDR
Pentium D 820 Два ядра, 2800 МГц 1 Мбайт 14x 200 МГц QDR
Pentium D 805 Два ядра, 2666 МГц 1 Мбайт 20x 133 МГц QDR

Если сравнивать D 805 с другими процессорами, то частота 2,66 ГГц выглядит не слишком привлекательно. Да и 133-МГц (533 QDR) шина кажется просто смешной по сравнению с 200 и 266 МГц у других процессоров.

Частота FSB Пропускная способность
266 МГц (1066 QDR) 8,53 Гбайт/с
200 МГц (800 QDR) 6,40 Гбайт/с
133 МГц (533 QDR) 4,20 Гбайт/с

Без каких-либо модификаций скорость обмена между Pentium D 805 и северным мостом чипсета более чем в два раза медленнее, чем 266 МГц у топовых процессоров.

Секрет множителя

Множитель показывает отношение частоты процессора к частоте FSB. Для Pentium D 805 он составляет 20x. По сравнению с другими процессорами, использующими шину 200 или 266 МГц, множитель очень высокий. Намного чаще встречаются множители 12x и 14x. Но высокий множитель приводит к тому, что Pentium D 805 является хорошим кандидатом для разгона. Можно просто увеличить частоту FSB до 200 МГц, после чего тактовая частота процессора вырастет до 4,0 ГГц (200 МГц x 20).

В следующей таблице можно посмотреть множители всех настольных процессоров Intel ещё со времён Socket 5 (1993 год).


Множитель процессора Extreme Edition 965 можно выставить в BIOS на любом уровне от 12x до 60x, но за разблокированный множитель придётся заплатить. Этот процессор стоит около $1000, которые может потратить далеко не каждый пользователь. Именно поэтому разгон менее скоростных процессоров сегодня так популярен.


Множитель 20x жёстко прошит в процессоре. Его нельзя изменить ни в BIOS, ни с помощью перемычек материнской платы.

Множитель Pentium D 805 фиксирован, поэтому есть только один способ разгона процессора: повышение тактовой частоты FSB.

FSB 133 МГц: идеальный вариант для разгона

Наш проект разгона Pentium D 805 начался со штатной тактовой частоты FSB 133 МГц (533 QDR).



Тактовую частоту FSB можно легко изменить в BIOS. Здесь показан пример на материнской плате Asus.



С помощью утилиты производителя материнской платы можно даже менять частоту FSB прямо под Windows. На иллюстрации показана утилита EasyTune 5 от Gigabyte.

В следующей таблице приведены возможные частоты FSB и соответствующие частоты процессора при множителе 20x.

Pentium D 805 с множителем 20x
Частота FSB Частота CPU
133 МГц (штатная) 2,66 ГГц
140 МГц 2,80 ГГц
150 МГц 3,00 ГГц
160 МГц 3,20 ГГц
166 МГц 3,33 ГГц
170 МГц 3,40 ГГц
180 МГц 3,60 ГГц
190 МГц 3,80 ГГц
200 МГц 4,00 ГГц
205 МГц 4,10 ГГц
210 МГц (Частота THG) 4,20 ГГц
215 МГц (максимальная частота, при которой система загружалась) 4,30 ГГц

На первый взгляд разгон столь дешёвого процессора до 4,1 ГГц кажется невероятным. Но в любом случае, числа не врут. А если более внимательно присмотреться к предшествующим моделям, то и причины столь сильного разгона понять будет можно.

Если внимательнее присмотреться к ядру 805, то мы обнаружим степпинг B0. Первые процессоры в линейке 8xx производились со старым степпингом A0.





По функциям энергосбережения или наборам инструкций существенных различий между степпингами нет, но степпинг B0 определёно говорит о том, что Pentium D 805 принадлежит ко второму поколению процессоров Pentium D 8xx. Обновлённые степпинги обычно отличаются дальнейшими оптимизациями раскладки элементов на кристалле, улучшениями техпроцесса, доработками дизайна и правками различных ошибок. В любом случае, степпинг B0 работает лучше старой версии A0. Поскольку первые версии процессоров 8xx отличались максимальной тактовой частотой 3,2 ГГц, можно было смело предположить, что степпинг B0 может разогнать их, по крайней мере, до 3,2 ГГц. Именно это мы и полагали, начиная тесты разгона Pentium D 805.

Процессор Тактовая частота Степпинг Номер Spec
Pentium D 840 3,20 ГГц A0 SL88R
Pentium D 830 3,00 ГГц A0 SL88S
Pentium D 820 2,80 ГГц A0 SL88T
Pentium D 840 3,20 ГГц B0 SL8CM
Pentium D 830 3,00 ГГц B0 SL8CN
Pentium D 820 2,80 ГГц B0 SL8CP
Pentium D 805 2,66 ГГц B0 SL8ZH





Чтобы различать процессоры между собой, каждая модель несёт специальный номер. Он называется Spec, а примеры номеров приведены в таблице выше. Эти номера наносятся как на сам процессор, так и на коробку снаружи.



Последние пять символов кода продукта, который находится в правой части коробки с процессором, как раз и относятся к номеру Spec.

Вы легко можете купить процессор Pentium D 805 со степпингом B0 и номером Spec SL8ZH, идентичный тому, что мы использовали в нашей статье. И, конечно, нет 100% гарантии, что вам удастся получить такие же тактовые частоты, как и в нашем случае.

Дабы предупредить продажу контрафактных или модифицированных процессоров, Intel создала специальную упаковку, на которой спецификации процессора отчётливо заметны через прозрачное пластиковое окошечко. Благодаря нему покупатель может легко сличить номер на процессоре с номером на коробке, даже ещё не совершив покупки.



В следующей таблице представлены процессоры Pentium для Socket 775 с кодовыми названиями ядер и модельными номерами.

Обзор процессоров для Socket 775
Название CPU Модельный номер Кодовое название ядра Степпинг Техпроцесс
Pentium EE 965 Presler C1 65 нм
Pentium EE 955 Presler B1 65 нм
Pentium D Линейка 900 Presler B1 65 нм
Pentium 4 Линейка 6x1 Cedar Mill B1 65 нм
Pentium EE 840 Smithfield A0 90 нм
Pentium D Линейка 800 Smithfield B0 90 нм
Pentium D Линейка 800 Smithfield A0 90 нм
Pentium EE 3,72 ГГц Prescott 2M N0 90 нм
Pentium 4 Линейка 6x0 Prescott 2M N0 90 нм
Pentium 4 Линейка 5x1 Prescott D0, E0 90 нм
Pentium 4 Линейка 5x0J Prescott D0, E0 90 нм
Pentium 4 Линейка 5x0 Prescott D0, E0 90 нм
Pentium EE 3,46 ГГц Gallatin M0 130 нм
Pentium EE 3,40 ГГц Gallatin M0 130 нм

Три причины появления Pentium D 805

Теперь возникает логичный вопрос: почему Intel решила выпустить на рынок подобный процессор? У нас есть три возможных объяснения. Первое: 65-нм технология производства работает лучше, чем предполагала Intel, что позволяет выдать более широкий ассортимент продуктов. Чтобы опустошить склады 90-нм процессоров и избежать финансовых убытков, продукты на основе старых технологий должны быть привлекательны для покупателей. Можно сбросить тактовые частоты и цены, чтобы быстро продать 90-нм процессоры.

Вторая возможная причина: процессор был выпущен сознательно, дабы отобрать у AMD рынок разогнанных процессоров. AMD уже достаточно долгое время предлагает Opteron 144 с низкой тактовой частотой, который занимает примерно такую же ценовую позицию и обеспечивает хороший потенциал разгона.

Наконец, третье предположение: Pentium D 805 - это обычный OEM-процессор, который весьма удачно получил превосходные технические характеристики, обеспечившие прекрасный потенциал разгона.

В конце концов, не так уж и важно, какая из высказанных причин верна. Потребитель выигрывает в любом случае!

Идеальные условия для разгона

Настало время выделить четыре ключевых элемента, которые позволяют процессору показать хороший потенциал разгона.

  • Низкая штатная частота шины FSB , что позволяет разгонять процессор методом её увеличения.
  • Высокий множитель , который позволяет процессору достигать высоких тактовых частот.
  • Улучшенная версия кристалла (степпинг) .
  • Низкая цена по сравнению с топовыми процессорами, которая оправдывает усилия для осуществления разгона.

Какая память подходит лучше всего?

Pentium D 805 в штатном режиме работает с FSB 133 МГц (533 QDR). Поэтому из-за дизайна чипсета мы получаем максимальную частоту DDR2-533. Но разгон шины процессора также приводит и к увеличению частоты памяти. Её можно рассчитать, взяв частоту FSB и множитель шины памяти. Обычно на платформах Intel множитель меняется от 2,0 до 4,0. Поскольку наш разгон начался с очень низкой частоты FSB, с контроллером памяти могут наблюдаться определённые трудности. А именно: для частот FSB от 133 МГц до 148 МГц единственными вариантами множителя являются 3,0 и 4,0 - меньшие значения смысла не имеют.

FSB (МГц) Множитель Память
133 - 148 3,00 DDR2-400 до 444
133 - 148 4,00 DDR2-533 до 592
149 - 266 2,00 DDR2-298 до 533
149 - 266 2,66 DDR2-396 до 710
149 - 266 3,00 DDR2-447 до 800
149 - 266 3,33 DDR2-496 до 888
149 - 266 4,00 DDR2-596 до 1066

Мы предполагаем, что выставлен множитель 4,0, который поднимает частоту памяти DDR2-533 для FSB 133 МГц до значения DDR2-667, когда частота FSB увеличивается до 166 МГц. Если же вы увеличите частоту FSB до 200 МГц, то таким образом повысите и скорость памяти до DDR2-800. Если вы будете продолжать увеличивать частоту FSB, то и частоты памяти тоже станут повышаться.

Некоторые производители материнских плат не позволяют использовать высокоскоростную память DDR2-1066. Причина кроется в компонентах, которые они установили на плату. Чтобы память смогла работать на высоких частотах, компоненты должны быть очень качественными, повышая, в свою очередь, стоимость материнской платы. Да и дизайн материнской платы тоже играет свою роль: линии данных, которые будут работать на частоте 500 МГц, могут располагаться близко друг к другу, на расстоянии 10 см. Плохой дизайн приводит к накоплению ёмкости и появлению резонансных помех, что негативно сказывается на стабильности и может привести к краху системы.

При частотах FSB ниже 149 МГц множители памяти ниже 3,0 не доступны, так как с точки зрения производительности они смысла не имеют. Например, при частоте FSB 133 МГц множитель 2,0 приводит к скорости DDR2-266.

Множители памяти, доступные в BIOS, меняются от одного производителя к другому. Множитель 4,0 тоже бывает не всегда, поэтому ошибочный выбор материнской платы может привести к падению производительности. В большинстве случаев производители указывают на поддержку множителя 4,0 как "Native DDR2-800."

Правильный чипсет

Выбрать правильный чипсет для нашего проекта оказалось очень просто: все чипсеты, которые поддерживают двуядерные процессоры, поддерживают и частоту FSB не меньше 200 МГц. Конечно, Pentium D 805 они тоже поддерживают. Мы успешно осуществили наш проект разгона на пяти материнских платах от Asus и Gigabyte, список которых приведён ниже.

  • Asus P5WD2-E Premium (Intel 975x)
  • Asus P5WD2-WS Premium (Intel 975x)
  • Asus P5WD2 Premium (Intel 955X)
  • Gigabyte G1975X Turbo (Intel 975X)
  • Gigabyte 8I955X Royal (Intel 955X)

Если же вы хотите быть точно уверенным, что ваш процессор заработает с материнской платой и CPU удастся разогнать, внимательно изучите список совместимости от производителя платы. Мы решили обратиться к трём крупнейшим производителям розничных материнских плат: Asus, Gigabyte и MSI. И вот что мы обнаружили.






У MSI ситуация не совсем вразумительная. У многих материнских плат этот процессор был добавлен совсем недавно. У некоторых он вообще не поддерживается.

Проблемы с материнскими платами MSI возникают из-за решения этого производителя сохранить цены на минимальном уровне. Тесты компонентов и совместимости проходили при частоте памяти только 200 МГц. Так что использование этих материнских плат на более высоких скоростях может привести к потере стабильности.

У разгона CPU есть и обратная сторона медали: тепло, выделяющееся из-за очень высокого энергопотребления. Поскольку наш процессор Pentium D 805 был создан по 90-нм технологии и использует двуядерный дизайн, энергопотребление при частотах выше 4 ГГц оказывается уже экстремальным.



В соответствии с "Platform Compatibility Guide" этот процессор потребляет до 95 Вт на стандартной тактовой частоте. Обозначение 05A указывает на спецификацию PRB0. Конечно, это означает, что и кулер в комплекте поставки тоже рассчитан на такое, относительно скромное, тепловыделение.



"Коробочная" версия кулера.



На стандартной тактовой частоте 2,66 ГГц Intel указывает максимальное энергопотребление/тепловыделение 95 Вт. Если призвать на помощь математику, то на 4 ГГц мы получаем теоретический уровень тепловыделения 142 Вт.


По тем же спецификациям процессор может питаться от напряжения в диапазоне 1,2-1,4 В. Уровень напряжения может меняться от одного процессора к другому: он записывается в ПЗУ чипа и не указывается на упаковке или в номере Spec.



Чем ниже стандартное напряжение процессора, тем ниже будет энергопотребление и тем меньше будут требования к системе охлаждения.


Меньшее напряжение питания процессора обычно указывает на более качественный кристалл. Транзисторам для переключения требуется меньшее напряжение, что повышает шансы получить высокие тактовые частоты.


У купленного нами процессора номинальное напряжение составляет 1,3375 В.

Если вы хотите получить те же результаты разгона, что и мы (или даже ещё более высокую частоту), уровень напряжения вашего Pentium D 805 должен быть такой же или ещё ниже.

Рост энергопотребления более 200 Вт

Мы провели измерения на разных тактовых частотах. Для тестовой системы мы использовали следующие компоненты:

  • Intel Pentium D 805;
  • блок питания Tagan i-Xeye 480 Вт;
  • Asus P5WD2-E Premium;
  • OCZ DDR2-800 (2x 512 Мбайт);
  • 2x Western Digital WD160;
  • GeForce 7800 GTX;
  • Gigabyte DVD-ROM 16x.



После разгона Pentium D 805 энергопотребление системы в режиме бездействия поднимается на 88 Вт. Это увеличение связано с подъёмом напряжения, необходимого для стабильной работы.



При полной нагрузке (100%) на оба процессорных ядра разница в энергопотреблении между стандартной тактовой частотой и разогнанным до 4,1 ГГц процессором становится просто огромной. Прирост производительности обходится в дополнительные 216 Вт.


Если посмотреть на энергопотребление в режиме бездействия, то наша разогнанная система выглядит не так уж и печально. Например, по сравнению с Pentium D 950 на 3,4 ГГц система после разгона до 4,1 ГГц потребляет всего на 50 Вт больше.


При максимальной нагрузке разница между Pentium D 950 и 4,1-ГГц Pentium D 805 увеличивается до 109 Вт. Учитывая разницу между ними в 700 МГц, рост кажется весьма разумным.

Мы решили понять, какой блок питания нужен нашей системе, и для этого полностью нагрузили процессор вместе с видеокартой. В результате мы получили энергопотребление системы 512 Вт (от розетки). Весьма немало, но следует ещё и учитывать КПД блока питания. Большинство блоков питания выдают КПД между 75 и 80 процентами, то есть наша система потребляла около 380 Вт питания. Так что если ваш блок питания способен выдавать 500 Вт, вы можете заниматься разгоном без проблем.

Чтобы не перегружать стабилизатор напряжения на материнской плате, лучше брать модель с 8-фазным стабилизатором. По этой причине мы рекомендуем материнскую плату Asus P5WD2-WS Premium для рабочих станций.



Благодаря 8-фазному стабилизатору напряжения плата Asus P5WD2-WS способна справиться с высоким энергопотреблением процессора.

Энергосбережение: SpeedStep (C1E) отсутствует

Отключив функцию энергосбережения C1E у Pentium D 805, Intel похоронила любую надежду получить процессор, близкий к Intel Pentium Extreme Edition 965 с 266-МГц FSB. Так что в BIOS нельзя включить Enhanced Halt State, а множитель - понизить до 14x. Жаль, поскольку конфигурация 14 x 266 = 3,73 ГГц выглядела бы привлекательно.





Чтобы убедиться в достоверности результатов, мы устанавливали процессор в разные материнские платы от Asus и Gigabyte. Но ни на одной плате с самой свежей версией BIOS мы не смогли включить C1E.

Решение Intel выключить функцию C1E может иметь под собой две причины.

  • Все предыдущие настольные процессоры с функцией C1E не могли снижать тактовую частоту ниже 2,8 ГГц. В случае Pentium D 805 штатная тактовая частота 2,66 ГГц уже находится ниже этого порога. Функция C1E снизила бы частоту до 1,86 ГГц, что не типично для настольных процессоров Intel.
  • Intel прекрасно представляет себе хороший потенциал чипа по разгону, после которого он способен выдать примерно такую же производительность, как и скоростной Extreme Edition, стоящий более $1000. Благодаря C1E мы смогли бы получить такую же тактовую частоту, как и у Intel Pentium EE 965 (14 x 266). Впрочем, Pentium D 805 оснащён в два раза меньшим кэшем L2 и не поддерживает технологию Hyper-Threading.

Поскольку функция C1E отсутствует, процессор не поддерживает и SpeedStep. Дело в том, что две этих функции зависят друг от друга.

Функции энергосбережения
Процессор Версия C1E EIST TM1 TM2
Pentium EE 965 C1 X X
Pentium EE 955 B1 X
Pentium D Линейка 900 B1 X X
Pentium 4 Линейка 6x1 B1 X X
Pentium EE 840 A0 X X
Pentium D 805 B0 X
Pentium D Линейка 800 B0 X X X
Pentium D Линейка 800 A0 X X X
Pentium EE 3,72 ГГц N0 X
Pentium 4 Линейка 6x0 N0 X X X
Pentium 4 Линейка 5x1 D0, E0 X X
Pentium 4 Линейка 5x0J D0, E0 X X
Pentium 4 Линейка 5x0 D0, E0 X X
Pentium EE 3,46 ГГц M0 X
Pentium EE 3,40 ГГц M0 X
Экономия энергии Защита

Разгон без риска, включая защиту от перегрева

Процессор Pentium D поддерживает вторую версию Intel Thermal Monitor, защитного механизма, который позволяет системе продолжать работать без ущерба процессору. Технология Thermal Monitoring появилась в процессорах Pentium 4 (Willamette) ещё в 2000 году. Если температура процессора превышает определённый порог, то тактовый генератор автоматически включает троттлинг. При этом энергопотребление (и тепловыделение) существенно снижается, но и производительность тоже заметно падает.

Обновлённая версия Thermal Monitoring 2 оказалась умнее: тактовый генератор уже не пропускает такты, зато снижает тактовую частоту процессора. Система включает сигнал PROCHOT, при котором процессор работает безупречно, хотя и на сниженной тактовой частоте. Поскольку активация PROCHOT в качестве защитного механизма Thermal Monitoring 2 происходит в самом процессоре, не требуется ни обновлений BIOS, ни каких-либо изменений настроек. Упомянутая выше технология Enhanced Halt Mode C1E переводит эту защиту ещё на одну ступеньку выше, захватывая и режим бездействия операционной системы.



Поскольку технология Thermal Monitoring 2 обеспечивает, своего рода, защиту от перегрева, благодаря ей разгонять систему стало намного легче. Кроме того, если процессор перегреется, технология TM2 отреагирует намного лучше, чем в случае системы, защищённой Thermal Monitor 1. Вторая версия технологии Thermal Monitor является, своего рода, бонусом для оверклокеров.

Готов для 64-битного будущего

Если взглянуть на набор функций Pentium D 805, то можно сразу же понять: перед нами не старый процессор.

Функции процессора
Название Версия Число логических ядер HT NX EM64T VT
Pentium EE 965 C1 4 X X X X
Pentium EE 955 B1 4 X X X X
Pentium D Линейка 900 B1 2 X X X
Pentium 4 Линейка 6x1 B1 2 X X X
Pentium EE 840 A0 4 X X X
Pentium D 805 B0 2 X X
Pentium D Линейка 800 B0 2 X X
Pentium D Линейка 800 A0 2 X X
Pentium EE 3,72 ГГц N0 2 X X X
Pentium 4 Линейка 6x0 N0 2 X X X
Pentium 4 Линейка 5x1 D0, E0 2 X X X
Pentium 4 Линейка 5x0J D0, E0 2 X X
Pentium 4 Линейка 5x0 D0, E0 2 X
Pentium EE 3,46 ГГц M0 2 X
Pentium EE 3,40 ГГц M0 2 X

Если сравнить Pentium D 805 с самыми современными моделями процессоров, он оказывается ничуть не хуже. Действительно, у него есть поддержка как EM64T (64-битные инструкции), так и бита Execute Disable (NX). Pentium D 805 основан на двуядерной архитектуре, поэтому с Hyper-Threading можно расстаться без особых страданий. Единственное, чего не хватает, - технологии виртуализации Intel Virtualization Technology (VT). Собственно, практика отключения тех или иных функций в процессорах Intel нам известна.

Дневник разгона THG

Начинаем с 2,66 ГГц

По умолчанию Pentium D 805 работает с тактовой частотой 2,66 ГГц. Конечно, подобная частота отнюдь не впечатляет.


Что касается частоты памяти, то выбор при FSB 133 МГц небольшой. Мы выбрали DDR2-533.



Чтобы максимально улучшить производительность, мы настроили минимальные задержки памяти.


3,33 ГГц: стабильная система при стандартном уровне напряжения

Сначала мы решили поднять частоту FSB со 133 до 166 МГц. К нашему удивлению процессор заработал на частоте 3,33 ГГц и стандартном напряжении 1,3375 В без каких-либо проблем, даже когда оба ядра были полностью нагружены.




Множитель 20x приводит к тому, что при FSB 166 МГц частота процессора составляет 3,33 ГГц. Следует отметить, что указанное напряжение питания 2,7 В является неверным.


При выборе FSB 166 МГц частоты памяти существенно увеличиваются.





Эффективности "коробочной" версии кулера для данной частоты оказалось достаточно. Система без проблем стартовала на частоте 3,33 ГГц, а подобный разгон привёл к росту энергопотребления в режиме бездействия на 6 Вт. Но если CPU нагрузить и выждать некоторое время, то система "вылетит" из-за перегрева. Причиной является способ управления вентилятором. Intel сознательно ограничила уровень шума в режиме активности, но из-за разгона тепловыделение увеличивается на 24 Вт, и у кулера начинаются проблемы. Контроллер не может правильно реагировать на подобный рост тепловыделения, и кулер не справляется с охлаждением.



"Коробочная" версия кулера справляется с охлаждением процессора только на штатных частотах.


Pentium D 805 "Коробочный" кулер Intel
Тактовая частота Бездействие
4,10 ГГц Крах Крах
4,00 ГГц Крах Крах
3,80 ГГц Крах Крах
3,60 ГГц Крах Крах
3,32 ГГц Крах 57°C
2,66 ГГц 78°C 53°C

Мы решили отказаться от "коробочного" кулера Intel и выбрали модель Zalman. Рекомендуем CNPS9500 - один из лучших кулеров на рынке (см. наше тестирование ).


3,60 ГГц: работа без проблем

Мы медленно поднимали тактовые частоты и превысили производительность Pentium Extreme Edition 840, который работает на 3,2 ГГц. Этот процессор продаётся в рознице примерно за $1000, так что, выбрав Pentium D 805, мы сэкономили $870. Мы по-прежнему не увеличивали напряжение, а процессор в тестах работал стабильно.


В магазине Pentium EE 840 можно купить примерно за $1000.

Вполне понятно, что EE 840 работает на частоте FSB, которая на 20 МГц выше, да и поддерживает технологию Hyper-Threading. Зато Pentium D 805 работает с тактовой частотой на 400 МГц выше, поэтому и производительность оказывается выше.

Разгон FSB до 180 МГц улучшает производительность памяти. Максимальная частота памяти в нашем тестировании составила 360 МГц (множитель 4,0), что даёт DDR2-720. Производительность памяти по сравнению с оригинальной тактовой частотой улучшилась на 35 процентов.

Теперь энергопотребление всей системы существенно возросло. В режиме бездействия энергопотребление выросло на 33 Вт, а энергопотребление всей системы составило 204 Вт. При максимальной нагрузке рост энергопотребления составил 101 Вт. Учитывая, что 80% этих 101 Вт относятся к процессору, энергопотребление последнего на частоте 3,6 ГГц удвоилось до 160 Вт. Мы примерно на 30 Вт превысили максимальный тепловой пакет для двуядерных процессоров.

3,8 ГГц: пришлось немного увеличить напряжение питания

Мы продолжали увеличивать частоту FSB и достигли 190 МГц. На такой частоте мы уже не смогли обеспечить стабильную работу, поэтому пришлось увеличить напряжение CPU. Мы поднимали напряжение с шагом 0,025 В до тех пор, пока процессор не начинал стабильно работать при максимальной нагрузке. В данном случае цель была достигнута при напряжении 1,500 В, то есть на 0,1625 В выше стандартного уровня.




Конечно, в результате повышения напряжения питания увеличивается и тепловыделение, но кулер Zalman смог без всяких проблем с ним справиться, при этом уровень шума не выходил за разумные пределы. Да и устанавливать скорость вращения на максимум ещё не было необходимости.

В режиме бездействия энергопотребление оказалось на 14 Вт выше, чем на частоте 3,6 ГГц. При полной нагрузке энергопотребление увеличилось ещё на 36 Вт - среднее энергопотребление процессора составило около 190 Вт.

Производительность памяти увеличивалась пропорционально частоте процессора: теперь в BIOS можно было выбрать частоту DDR2-760, которая на 7,6 процента увеличивает производительность памяти.



3,8 ГГц - это хорошо, но частота 4,0 ГГц позволяет обойти текущую версию Pentium Extreme Edition 965. Для этого частоту FSB пришлось увеличить до 200 МГц.



Чтобы система оставалась стабильной и на 4,0 ГГц, нам вновь пришлось повысить напряжение процессора. Мы использовали тот же подход постепенного увеличения напряжения, который описан выше. Увеличив напряжение на 0,2875 В, мы получили стабильную работу на 4 ГГц.


Хотя процессор Pentium D 805 оснащён только 1-Мбайт кэшем L2, тактовая частота CPU на 276 МГц превышает топовый Pentium EE 965, оснащённый 2 Мбайт кэша L2. Поэтому 805 обгоняет более дорогой CPU .


Именно на этом уровне кулер Zalman стал демонстрировать признаки чрезмерной нагрузки. Максимальной скорости вращения вентилятора уже было недостаточно для того, чтобы отвести огромное количество тепла. Процессор перегрелся и стал включать троттлинг.


Фиолетовый график наглядно показывает, что в работу процессора вмешивается технология Thermal Monitor 2, включающая троттлинг. Конечно, она не позволяет процессору чрезмерно нагреться, но и производительность заметно снижается.

Троттлинг существенно снижает производительность процессора. На 4 ГГц тепловыделение вновь возрастает, и теперь мы должны отводить при максимальной нагрузке 195 Вт, а не оригинальные 80 Вт.

Pentium D 805 Кулер Zalman
Тактовая частота Бездействие
4,10 ГГц Крах 52 °C
4,00 ГГц 80 °C 49 °C
3,80 ГГц 76 °C 47 °C
3,60 ГГц 74 °C 46 °C
3,32 ГГц 71 °C 46 °C
2,66 ГГц 64 °C 44 °C

Стало вполне очевидно, что для работы системы на частоте 4 ГГц воздушного охлаждения при любых условиях уже недостаточно. Мы перешли на водяную систему охлаждения. И всё заработало!


При частоте FSB 200 МГц мы можем использовать память DDR2-667, а также DDR2-800.



Мы провели наши тесты как с памятью DDR2-667, так и с DDR-800.



В некоторых приложениях Pentium D 805 уже обогнал Pentium Extreme Edition 965, но мы решили на этом не останавливаться и увеличили частоту FSB до 205 МГц. В результате процессор заработал на 4,1 ГГц.


Но для стабильной работы системы пришлось принять дополнительные меры. Мы увеличили напряжение питания ядра на 0,338 В до уровня 1,675 Вт. Частота памяти составила DDR2-820, но мы смогли сохранить задержки CL4,0-4-4-8.







...но как только мы перезапустили систему, то получили мигающее сообщение "CPU Overvoltage Error".

С помощью этого сообщения Asus информирует пользователя о превышении спецификаций CPU и переходе на опасный уровень напряжения.


Следует отметить, что наша тестовая система на 4,1 ГГц без каких-либо проблем прошла через все тесты.

Энергопотребление процессора достигло просто немыслимого уровня из-за значительного повышения напряжения питания. По сравнению со штатной частотой при 4,1 ГГц процессор в режиме бездействия потребляет на 54 Вт больше энергии. Трудно поверить, но при максимальной нагрузке 4,1-ГГц процессор потребляет на 146 Вт больше. При этом тактовая частота увеличилась на 1,44 ГГц.


4,3 ГГц: будет ли система грузиться?

Вполне понятно, что мы попытались найти верхнюю границу возможностей Pentium D 805 для разгона. Мы успешно загрузили Windows XP на системе с напряжением процессора 1,675 В и тактовой частотой 4,2 ГГц. Но когда мы пытались запускать любое приложение с нагрузкой, система сразу же "вылетала".


Процессор Pentium D 805 стартовал и на 4,3 ГГц, но при этом Windows XP уже не смогла загрузиться.



Анализ результатов тестов: кто же победил?

Да, судя по результатам, Intel вновь смогла отвоевать у AMD звание лучшего друга оверклокеров. Opteron 144 недолго оставался лучшим процессором для разгона. Сегодня он уступил место Pentium D 805.

Если у вас есть время и необходимые навыки, то можно добиться стабильной работы Pentium D 805 и на частотах вплоть до 4,3 ГГц. Конечно, если вы сможете выдать нужное напряжение и отвести накапливающееся тепло.

Тактовая частота CPU Режим работы памяти Пропускная способность памяти Процент увеличения
2,66 ГГц DDR2-533 8,5 Гбайт/с Стандарт
3,33 ГГц DDR2-664 10,6 Гбайт/с 24,6%
3,60 ГГц DDR2-720 11,5 Гбайт/с 35,1%
3,80 ГГц DDR2-760 12,2 Гбайт/с 42,6%
4,00 ГГц DDR2-800 12,8 Гбайт/с 50,1%
4,10 ГГц DDR2-820 13,1 Гбайт/с 54,1%



Заключение: двуядерный процессор на 4,1 ГГц

Кажется невероятным, но это правда: процессор за $130 после разгона способен с лёгкостью обогнать топовые модели от AMD (Athlon 64 FX-60) и Intel (Pentium Extreme Edition 965), каждая из которых стоит от $1000.

Мы купили наш образец Intel Pentium D 805 в обычном магазине, после чего разогнали его до 4,1 ГГц (по сравнению с штатной тактовой частотой 2,66 ГГц). Прирост тактовой частоты составил около 54%, но для экстремальных частот всё же требуется дополнительное охлаждение. Секрет разгона кроется в тактовой частоте FSB: её нужно увеличить со 133 до 200 МГц. При этом система остаётся полностью стабильной, поскольку современные материнские платы на чипсетах Intel 9xx рассчитаны на работу с частотой FSB вплоть до 266 МГц. Pentium D 805 с лёгкостью сменяет предыдущего лидера разгона: процессор AMD Opteron 144.



Система после доработки: усиленный Pentium D 805 с лёгкостью обходит флагманские процессоры от AMD и Intel.

Совсем недавно мы протестировали флагманский процессор Intel Pentium EE 965 (Extreme Edition), который в рознице стоит около $1100. Однако ему пришлось уступить лидерство по производительности нашему 4,1-ГГц процессору. То же самое относится и к процессору Athlon 64 FX-60, который уступает 4,1-ГГц Pentium D 805 во многих тестах.

Как показывают результаты нашего тестирования, Pentium D с экстремальным разгоном выходит на первое место по производительности почти во всех тестах, включая кодирование и монтаж видео, кодирование звука, офисные приложения, обработку фотографий и различные 3D-игры. Pentium D 805 выходит вперёд и в тестах многозадачности, когда несколько приложений выполняется параллельно. Если вы работаете со сложными фильтрами и эффектами в Adobe PhotoShop CS2 или используете use Pinnacle Studio Plus 10 для обработки HD-видео, то разогнанный процессор за $130 окажется лучшим выбором. Даже геймерам разогнанный Pentium D 805 подойдёт как нельзя лучше.


В заключение следует упомянуть и возможные риски, связанные с разгоном. Начнём с энергопотребления: на частоте 4,1 процессор потребляет 210 Вт против штатных 95 Вт. При этом ток достигает 125 А (!), что требует соответствующего отвода тепла от стабилизатора напряжения. Именно поэтому мы рекомендуем купить high-end кулер. В любом случае, из-за перегрева процессор из строя не выйдет: ситуацию спасает технология "Thermal Monitor 2", включающая троттлинг после достижения определённого температурного порога. Собственно, именно поэтому не стоит повышать напряжение CPU выше разумного уровня, то есть выше 1,7 В.

Если вы уже купили систему на Socket 775, то $130 за Pentium D 805 оправдают себя в любом случае. Если же вы будете переходить с системы AMD, то придётся потратиться на новую материнскую плату (не меньше $130 за качественную модель) и на 1 Гбайт качественной памяти DDR2 (не меньше $100). При этом не забывайте всё удовольствие, которые вы получите от сборки подобной системы. Фанатам AMD, возможно, придётся поменять своё отношение к Intel. Но оно того стоит.

  • МЕГАДЕШЕВАЯ GTX 1080 Gigabyte Gaming
  • GTX 1080 крутой нереф за копейки, делай заказ!
  • Много GTX 1060 от 17 т.р. в Ситилинке. Надо брать
  • Крутейший нереф GTX 1070 в XPERT.RU и задешево

Вы можете отметить интересные вам фрагменты текста,
которые будут доступны по уникальной ссылке в адресной строке браузера.

IBM Power7: восьмиядерный процессор с частотой 4.0 ГГц

Lexagon 14.07.2008 09:36 | версия для печати | архив

Компании AMD и Intel собираются в обозримой перспективе представить процессоры с шестью и восемью ядрами. Ради снижения энергопотребления частоты этих многоядерных монстров будут ограничены. Однако, высокая частота может сочетаться с большим количеством ядер, как утверждает сайт The Register . Британским коллегам стали известны подробности о будущих 45 нм процессорах Power7 производства IBM.

Эти процессоры будут иметь по восемь ядер, при этом в одном модуле будут объединены два таких процессора. Каждое ядро будет обеспечивать поддержку четырёх вычислительных потоков, а уровень быстродействия ядра будет измеряться 32 гигафлопсами. Тактовая частота процессоров Power7 будет равна 4.0 ГГц - это несколько ниже, чем частота сегодняшних процессоров Power6, которые работают на частотах до 5.0 ГГц. Выпускаться процессоры Power7 будут в 2010 году по 45 нм технологии.

На базе процессоров IBM Power7 будут строиться суперкомпьютеры. Например, к 2011 году Университет штата Иллинойс рассчитывает получить систему на базе 38 900 процессоров Power7 с восемью ядрами, которая будет иметь объём памяти 620 Тб. Монстр будет занимать более ста стоек и свыше 4000 кв.м площади. Надеемся, технический прогресс и на этот раз поможет быстрее решать научные задачи.