Словарь терминов. Частота и разрядность системной шины

Центральный процессор компьютера имеет ряд технических характеристик , которые определяют самую главную характеристику любого процессора — его производительность и о значении каждой из них полезно знать. Почему? Чтобы в дальнейшем хорошо ориентироваться в обзорах и тестированиях, а также маркировках ЦП. В данной статье я попытаюсь раскрыть основные технические характеристики процессора в понятном для новичков изложении.

Основные технические характеристики центрального процессора:

  • Тактовая частота;
  • Разрядность;
  • Кэш-память;
  • Количество ядер;

Рассмотрим подробнее данные характеристики

Тактовая частота

Тактовая частота — показатель скорости выполнения команд центральным процессором.
Такт — промежуток времени, необходимый для выполнения элементарной операции.

В недалеком прошлом тактовую частоту центрального процессора отождествляли непосредственно с его производительностью, то есть чем выше тактовая частота ЦП, тем он производительнее. На практике имеем ситуацию, когда процессоры с разной частотой имеют одинаковую производительность, потому что за один такт могут выполнять разное количество команд (в зависимости от конструкции ядра, пропускной способности шины, кэш-памяти).

Тактовая частота процессора пропорциональна частоте системной шины (см. ниже ).

Разрядность

Разрядность процессора — величина, которая определяет количество информации, которое центральный процессор способен обработать за один такт.

Например, если разрядность процессора равна 16, это значит, что он способен обработать 16 бит информации за один такт.

Думаю, всем понятно, что чем выше разрядность процессора, тем большие объемы информации он может обрабатывать.

Обычно, чем больше разрядность процессора, тем его производительность выше.

В настоящее время используются 32- и 64-разрядные процессоры. Разрядность процессора не означает, что он обязан выполнять команды с такой же самой разрядностью.

Кэш-память

Первым делом ответим на вопрос, что такое кэш-память?

Кэш-память – это быстродействующая память компьютера, предназначена для временного хранения информации (кода выполняемых программ и данных), необходимых центральному процессору.

Какие данные хранятся в кэш-памяти?

Наиболее часто используемые.

Какое предназначение кэш-памяти?

Дело в том, что производительность оперативной памяти, сравнительно с производительностью ЦП намного ниже. Получается, что процессор ждет, когда поступят данные от оперативной памяти – что понижает производительность процессора, а значит и производительность всей системы. Кэш-память уменьшает время ожидания процессора, сохраняя в себе данные и код выполняемых программ, к которым наиболее часто обращался процессор (отличие кэш-памяти от оперативной памяти компьютера – скорость работы кэш-памяти в десятки раз выше).

Кэш-память, как и обычная память, имеет разрядность. Чем выше разрядность кэш-памяти тем с большими объемами данных может она работать.

Различают кэш-память трех уровней: кэш-память первого (L1), второго (L2) и третьего (L3). Наиболее часто в современных компьютерах применяют первые два уровня.

Рассмотрим подробнее все три уровня кэш-памяти.

Кэш-память первого уровня является самой быстрой и самой дорогой памятью.

Кэш-память первого уровня расположена на одном кристалле с процессором и работает на частоте ЦП (отсюда и наибольшее быстродействие) и используется непосредственно ядром процессора.

Емкость кэш-памяти первого уровня невелика (в силу дороговизны) и исчисляется килобайтами (обычно не более 128 Кбайт).

Кэш-память второго уровня — это высокоскоростная память, выполняющая те функции, что и кэш L1. Разница между L1 и L2 в том, что последняя имеет более низкую скорость, но больший объем (от 128 Кбайт до 12 Мбайт), что очень полезно для выполнения ресурсоемких задач.

Кэш-память третьего уровня расположена на материнской плате. L3 значительно медленнее L1и L2, но быстрее оперативной памяти. Понятно, что объем L3 больше объема L1и L2. Кэш-память третьего уровня встречается в очень мощных компьютерах.

Количество ядер

Современные технологии изготовления процессоров позволяют разместить в одном корпусе более одного ядра. Наличие нескольких ядер значительно увеличивает производительность процессора, но это не означает что присутствие n ядер дает увеличение производительности в n раз. Кроме этого, проблема многоядерности процессоров заключается в том, что н а сегодняшний день существует сравнительно немного программ, написанных с учетом наличия у процессора нескольких ядер.

Главными характеристиками шины являются ее разрядность и частота работы. Частота шины — это тактовая частота, с которой происходит обмен данными между процессором и системной шиной компьютера.

Естественно, чем выше разрядность и частота системной шины, тем выше производительность процессора.

Высокая скорость передачи данных шины обеспечивает возможность быстрого получения процессором и устройствами компьютера необходимой информации и команд.

Частота работы всех современные процессоров в несколько раз превышает частоту системной шины, поэтому процессор работает на столько, на сколько ему это позволяет системная шина. Величина, на которую частота процессора превышает частоту системной шины, называется множителем.

Некоторые наиболее важные параметры быстродействия установленного в вашем компьютере «железа» определяются тем, сколько раз в секунду отправляется и получается информация от того или иного устройства (процессора, памяти, дисководов и т.д.). Эти параметры измеряются в мегагерцах и называются «частотой». Когда говорят о частоте именно материнской платы , а не установленных на ней процессорах и микросхемах памяти, то обычно имеют в виду частоту шины передачи данных.

Инструкция

Воспользуйтесь для определения частоты шины на материнской плате фирменным программным обеспечением - часто оно содержит информационные и настроечные утилиты, которые позволяют узнать в числе прочих установок и нужный вам параметр. Такую утилиту ищите на оптическом диске в упаковочной коробке материнской платы . Если диска у вас нет, то его содержимое можно загрузить с сайта производителя. Например, для материнской платы ASRock Fatal1ty P67 называется F-Stream Tuning, а частоту шины платы можно увидеть на ее вкладке Hardware Monitor, рядом с надписью BCLC/PCI-E Frequency. На вкладке Overclocking ее можно не только увидеть, но и изменить при помощи ползунка рядом с такой же надписью.

Установите в качестве альтернативы фирменному ПО универсальную программу для определения параметров и мониторинга установленного в компьютер оборудования. Такие приложения распространяются фирмами, не имеющими отношения к производству материнских плат, и поэтому рассчитаны на работу с устройствами многих производителей. Например, это может быть весьма популярная бесплатная утилита CPU-Z (http://cpuid.com/softwares/cpu-z.html) или не менее популярная программа, предоставляющая информацию о более широком спектре периферийных устройств, AIDA (http://aida64.com). Если вы установите последнюю из них, то, чтобы узнать информацию о рабочей частоте системной шины, раскройте в меню раздел «Системная плата», кликните строку с точно таким же названием и посмотрите число, указанное напротив надписи «Реальная частота» в секции «Свойства шины FSB».

Зайдите в панель управления BIOS, если нет возможности узнать частоту шины материнской платы непосредственно из операционной системы. В базовой системе ввода/вывода тоже не всегда можно увидеть значение этого параметра - часто здесь не указывается конкретное значение, а выставляется параметр Auto. Тем не менее, можно попробовать и этот вариант - поищите среди настроек ту, что содержит упоминание FSB Freqency либо CPU Freqency. Точное название зависит от используемой версии BIOS, а размещаться она будет, скорее всего, на вкладке Advanced.

Инструкция

Для определения частоты шины нужно воспользоваться специальными программами. Одна из довольно простых утилит CPUID CPU-Z, к тому же, является абсолютно бесплатной. Скачайте ее из интернета и установите на свой компьютер. Запустите программу.

После запуска выберите вкладку CPU. В появившемся окне вы сможете увидеть основную информацию о вашем процессоре. В левой нижней части окна есть раздел Clocks. В этом разделе вам нужно найти строку Bus Speed. Значение в этой строке и есть частота работы шины.

Еще одна программа, с помощью которой можно узнать частоту шины, называется AIDA64 Extreme Edition. В отличие от CPUID CPU-Z, эта программа сможет показать текущую частоту шины и допустимые пределы ее повышения. Приложение платное, но есть бесплатный период использования сроком в один месяц. Скачайте программу из интернета, установите ее на компьютер и запустите. AIDA64 Extreme Edition начнет сканирование системы. После его завершения вы попадете в основное меню.

В правом окне основного меню будет список устройств. В этом списке выберите «Системная плата». В следующем окне также выберите «Системная плата». Появится окно с информацией о конфигурации вашей системной платы. Информация будет разбита на несколько разделов. Найдите раздел «Свойства шины FSB», в нем - строку «Реальная частота». Значение в этой строке и будет частотой шины.

Также для определения частоты можно воспользоваться программкой AI Booster. Установите ее, перезагрузите компьютер, после чего программа запустится автоматически, так как она встраивается в автозапуск. В меню приложения нажмите по значку Display tuning panel. Таким образом вы откроете дополнительную панель. Дальше выберите пункт Tuning. Чуть ниже под этим пунктом вы сможете посмотреть частоту шины.

Для полноценной оптимизации работы компьютера рекомендуют изменять параметры работы центрального процессора и оперативной памяти. Естественно, перед началом этого процесса лучше проверить стабильность этих устройств.

Вам понадобится

  • - CPU-Z;
  • - Speed Fan.

Инструкция

Установите программу CPU-Z и запустите ее. Выясните текущую производительность процессора. Общая частота работы ЦП получается произведением множителя на частоту шины. Чтобы обеспечить максимальный эффект от разгона процессора, необходимо повышать частоту шины.

Перезагрузите компьютер и откройте меню BIOS. Для этого нажмите клавишу Delete при старте загрузки ПК. Нажмите одновременно кнопки F1 и Ctrl, чтобы открыть меню дополнительных настроек. Для некоторых моделей материнских плат могут потребоваться другие комбинации клавиш.

Откройте меню, отвечающее за настройку параметров работы оперативной памяти и центрального процессора. Увеличьте частоту шины ЦП. Поднимите напряжение, подаваемое на процессор, изменив значение пункта CPU Voltage. Нажмите кнопку F10, чтобы сохранить настройки и перезагрузить компьютер.

Воспользуйтесь утилитой CPU-Z для оценки стабильности работы процессора. Откройте панель управления и выберите меню «Система и безопасность». Перейдите к пункту «Администрирование». Кликните по ярлыку «Проверка памяти Windows». Выполните диагностику состояния ОЗУ, перезагрузив компьютер. Если система не выявила сбоев, то повторите вход в меню BIOS.

FSB - наверняка, многие пользователи не раз слышали о таком компьютерном термине. Это название носит один из важнейших компонентов материнской платы – системная шина.

Как известно, сердцем любого персонального компьютера является центральный процессор. Но не только процессор определяет архитектуру ПК. Она также во многом зависит и от используемого на материнской плате набора вспомогательных микросхем (чипсета). Кроме того, процессор не может функционировать и без внутренних шин, представляющих собой набор сигнальных проводников на системной плате. В функции шин входит передача информации между различными устройствами компьютера и центральным процессором. Характеристики внутренних шин, в частности, их пропускная способность и частота во многом определяют и характеристики самого компьютера.

Пожалуй, наиболее важной из шин, от которой больше всего зависит производительность компьютера, является шина FSB. Аббревиатура FSB расшифровывается как Front Side Bus, что можно перевести как «передняя» шина. В основные функции шины входит передача данных между процессором и чипсетом. Точнее говоря, FSB располагается между процессором и микросхемой «северного моста» материнской платы, где находится контроллер оперативной памяти.

Связь же между северным мостом и другой важной микросхемой чипсета, называемой «южным мостом» и содержащей контроллеры устройств ввода-вывода, в современных компьютерах обычно осуществляется при помощи другой шины, которая носит наименование Direct Media Interface.

Как правило, процессор и шина имеют одну и ту же базовую частоту, которая называется опорной или реальной. В случае процессора его конечная частота определяется произведением опорной частоты на определенный множитель. Вообще говоря, реальная частота FSB обычно является основной частотой материнской платы, при помощи которой определяются рабочие частоты всех остальных устройств.

В большинстве старых компьютеров реальная частота системной шины определяла и частоту оперативной памяти, однако сейчас память часто может иметь и другую частоту – в том случае, если контроллер памяти располагается в самом процессоре. Кроме того, следует иметь в виду, что реальная частота шины не эквивалентна ее эффективной частоте, которая определяется количеством передаваемых бит информации в секунду.

В настоящее время данная шина считается устаревшей и постепенно заменяется более новыми – QuickPath и HyperTransport. Системная шина QuickPath является разработкой фирмы Intel, а HyperTransport – компании AMD.

Front Side Bus в традиционной архитектуре чипсета

QuickPath

Шина QuickPath Interconnect (QPI) была разработана Intel в 2008 г. для замены традиционной шины FSB. Первоначально QPI использовалась в компьютерах на основе процессоров Xeon и Itanium. Разработка QPI была призвана бросить вызов уже использовавшейся в течение некоторого времени в чипсетах AMD шине Hypertransport.

Хотя QPI принято называть шиной, тем не менее, ее свойства существенно отличаются от свойств традиционной системной шины, и по своему устройству она представляет собой проводное соединение типа interconnect. QPI является неотъемлемой частью технологии, которую Intel называет архитектурой QuickPath. Всего QPI имеет в своем составе 20 линий данных, а общее количество проводников шины QPI равно 84. Как и Hypertransport, технология QuickPath подразумевает, что контроллер памяти встроен в сам центральный процессор, поэтому она используется лишь для связи процессора с контроллером ввода-вывода. Шина QuickPath может работать на частотах в 2.4, 2.93, 3.2, 4.0 или 4.8 ГГц.

Схема расположения QuickPath Interconnect

Hypertransport

Шина Hypertransport является разработкой AMD. Hypertransport имеет рабочие характеристики, сближающие ее с шиной QuickPath, но при этом она была создана на несколько лет раньше последней. Шину отличают оригинальные архитектура и топология, совершенно непохожие на архитектуру и топологию FSB. В основе шины Hypertransport лежат такие составные элементы, как тоннели, мосты, линки и цепи. Архитектура шины призвана исключить узкие места в схеме соединений между отдельными устройствами материнской платы и передавать информацию с высокой скоростью и небольшим количеством задержек.

Существует несколько версий Hypertransport, работающих на разной тактовой частоте – от 200 МГц до 3,2 ГГц. Максимальная пропускная способность шины для версии 3.1 составляет более 51 ГБ/с (в обоих направлениях). Шина используется как для замены шины FSB в однопроцессорных системах, так и в качестве основной шины в многопроцессорных компьютерах.

Схема расположения шины Hypertransport

Direct Media Interface

Пару слов стоит сказать и о такой разновидности системной шины, как Direct Media Interface (DMI). DMI предназначена для соединения между двумя основными микросхемами чипсета – северным и южным мостами. Впервые шина типа DMI была использована в чипсетах Intel в 2004 г.

Шина DMI имеет свойства архитектуры, объединяющие ее с такой шиной для подключения периферийных устройств, как PCI Express. В частности, DMI использует линии с последовательной передачей данных, а также имеет отдельные проводники для передачи и приема данных.

Место DMI (обозначена красным) в архитектуре компьютера.

Оригинальная реализация DMI обеспечивала передачу данных до 10 ГБит/c в каждом направлении. Современная же версия шины, DMI 2.0, может поддерживать скорость в 20 ГБ/c в обоих направлениях. Многие мобильные версии DMI имеют вдвое меньшее количество сигнальных линий по сравнению с версиями DMI для настольных систем.

Заключение

Системная шина является своеобразной кровеносной «артерией» любого компьютера, обеспечивающей передачу данных от «сердца» материнской платы – процессора к остальным микросхемам материнской платы и, прежде всего, к северному мосту, управляющем работой оперативной памяти. В настоящее время в различных архитектурах материнских плат можно встретить как традиционную шину FSB, так и имеющие сложные топологии высокоэффективные шины Hypertransport и QPI. Характеристики, производительность и архитектура системной шины являются важными факторами, которые определяют потенциальные возможности компьютера.

Процессоры архитектуры X86 (CPU) создаются для взаимодействия с материнским платами, которые имеют жестко заданную частоту системной шины (Front Side Bus или FSB), которая например, в большинстве компьютеров может составлять 133 МГц. Частота системной шины является одним из двух факторов, которые предопределяют рабочую частоту центрального процессора. Учитывая такую связь, технически возможно увеличение скорости системной шины для увеличения скорости работы центрального процессора, но это является рискованной затеей и может привести к негативным эффектам, например к неисправности материнской платы .

FSB и множитель

Центральный процессор обычно имеет встроенный умножитель частоты или множитель, который наряду с частотой системной шины, влияет на итоговую частоту работы. Например, современный процессор Intel Core i7-860 имеет множитель 21Х (multiplier) и рассчитан на работу в материнских платах с FSB 133 МГц, что при взаимном умножении дает результирующую частоту процессора 2.8 ГГц. Частота процессора, которая пишется обычно на защитной металлической крышке процессора или на упаковке к нему, на самом деле не является жесткой величиной и может быть изменена путем увеличения частоты системной шины или изменением коэффициента (множителя).

Разгон (оверклокинг)

Процесс увеличения тактовой частоты системной шины до более высоких значений, поддерживаемых процессором, получил название разгон или оверклокинг. Например, увеличение частоты системной шины с 133 МГц до 150 МГц приведет к росту таковой частоты процессора Intel Core i7-860 до значения 3.15 ГГц (умножьте 150 МГц на 21 и вы получите эту цифру, которую нужно перевести в гигагерцы). Разгон процессора позволяет увеличить производительность системы, которая нужна для выполнения приложений, требовательных к ресурсам процессора. Оверклокинг также помогает сэкономить ваши деньги – благодаря ему вы можете купить более низкочастотный процессор с хорошим разгонным потенциалом, нарастить частоту системной шины и добиться от этого процессора производительности, характерной для более дорогих и высокочастотных процессоров (из той же линейки).

Риск разгона

Большинство компонентов персонального компьютера используют частоту системной шины для синхронной работы друг с другом. Поэтому не стоит забывать, что выполняя разгон процессора и наращивая эту частоту, вы также увеличиваете ее для других компонентов системы, в том числе и кэш память процессора . Это может привести к выходу режимов их работы за пределы нормы и нарушению работы системы в целом. Эффект от разгона тяжело предвидеть – он может привести к избыточному выделению тепла и конфликтам в работе ЦПУ и прочих компонентов. Более того компьютер может полностью выйти из строя или наоборот, вы просто не сможете разогнать компьютер из-за установленных производителем ограничений.

Если же вам повезет, компьютер может продолжить работу в нормальном режиме, но станет намного быстрее. Вам стоит учесть, что разгон компонентов системы автоматически аннулирует гарантийные обязательства производителя. Обычно разгону подвержены компьютеры ручной сборки, собранные энтузиастами или мелкими компаниями из специально подобранных компонентов. Крупные компании типа Dell и HP защищают свою продукцию от подобных рискованных операций.

Понижение частот

Отдельно стоит сказать о том, что возможен обратный процесс – снижение частоты системной шины. Это приводит к снижению производительности системы и снижению выделения тепла ее компонентами. Такая схема действий предпринимается, когда возникают проблемы с охлаждением системы. Например, если компьютер попадает в агрессивную среду или замкнутое непроветриваемое помещение. Кроме того, понижение частоты может применяться для снижения энергопотребления в тех случаях, когда высокая производительность от процессора не требуется.

Блокирование множителя

Как мы уже разобрались, изменение частоты системной шины FSB приводит к изменению рабочих частот всех компонентов системы, а вот изменение коэффициента умножения более безопасно, так как влияет только на сам процессор. Поэтому разгон путем увеличения множителя имеет гораздо больше шансов на успех. Но, к превеликому сожалению любителей разгона, большинство процессоров (особенно Intel), имеют заблокированный множитель, который не может быть изменен. Только некоторые модели процессоров премиум-класса имеют разблокированный множитель и рассчитаны они именно на любителей оверклокинга.