Что такое центральный процессор? Виды процессоров и зачем они нужны

Сегодня мы рассматриваем центральный процессор компьютера CPU (Central Processing Unit - центральное обрабатывающее устройство или ЦПУ). Это сердце или, если хотите, - его мозг! На жаргоне компьютерщиков его иногда называют "камень" (кристаллический кремний действительно похож на камень).

Это главный обработчик поступающей в компьютер информации. Центральный процессор выполняет все необходимые математические операции с поступающими данными, производит различные выборки из баз данных, архивирует и разархивирует наши файлы, занимается , обрабатывает модель физического взаимодействия частиц в любимой компьютерной игре, наконец!

Центральный процессор современного компьютера делает очень много, проще будет перечислить то, чего он не делает:)

Вот несколько фотографий ЦПУ:



Первая фотография, это двухъядерный центральный процессор фирмы «Intel», вторая - его тыльная сторона. Этой стороной он и вставляется в процессорный разъем (сокет «socket») на . На этих фото мы видим CPU форм фактора «LGA-775». Аббревиатура «LGA» это сокращение от англ. "Land Grid Array" - тип корпуса с матрицей контактных площадок. Устаревшие модели поставлялись в корпусах «PGA» (Pin Grid Array - матрица штырьковых контактов), именно такой устаревший процессор представлен на последнем фото выше.

В старших моделях компьютеров была сопряжена с определенным риском согнуть или (не дай Бог) сломать одну из нескольких сотен PGA ножек. Страшный сон сборщика компьютеров! :) Сейчас все намного проще.

То что мы видим на фотографиях выше, - внешняя оболочка центрального процессора компьютера. Ее функция состоит в том чтобы защитить ядро (сам кристалл кремния) от механического воздействия, обеспечить площадь контакта с системой охлаждения (радиатором), а также - предоставить электрический контакт для питания устройства (фотографии выше под номером «1» и «2»).

Центральный процессор компьютера состоит из квадратной пластинки текстолита, в которую намертво вмонтировано его ядро (кристалл кремния), а также - выводы электрических контактов, плюс - защитная крышка сверху. Что находится под этой крышкой мы рассматривали .

Процесс изготовления готовых чипов можно описать приблизительно так: на тонкую кремниевую основу (подложку) через специальные "маски" с прорезями методом литографии поочередно наносятся слои проводников, полупроводников и изоляторов. Иногда используется процесс вытравливания элементов на кристалле (через те же отверстия в "маске"). После окончания процедуры подложка распиливается на квадраты, которые облекаются в защитную и теплопроводящую оболочку, снабжаются контактными площадками и изделие готово!

Сейчас рынок десктопных процессоров делят между собой практически только две крупные компании: «Intel» и «AMD». По данным на 2011 год первая "держала" более 80% этого рынка, а вторая - чуть более 10%. Совсем другое дело, - стремительно развивающийся рынок мобильных процессоров. Здесь представлено просто огромное количество компаний, выпускающих свои решения (ну, не совсем "свои", но об этом мы поговорим в другой статье).

Схематически внутреннее устройство CPU можно изобразить следующим образом:


Вот наглядное фото кристалла CPU в разрезе:


А это - мощный двухъядерный «Athlon»:




Да, вот еще одна фотография, для полноты картины так сказать:

Это тоже процессор компьютера,просто в другом конструктивном исполнении. Были, в свое время, подобные образцы, текстолитовая плата которых вставлялась вертикально в специальный разъем на материнской плате. Он назывался (Slot A), отсюда пошел термин "слотовые процессоры". Больше всего с виду конструкция напоминает картридж игровой приставки с вентилятором сбоку:)

Если коснуться такого важного аспекта, как производительность ЦП, то она напрямую зависит от нескольких составляющих и из них же складывается:

Разберем каждый из пунктов подробнее. Тактовая частота процессора измеряется в герцах (Гц).

Примечание : Герц (Hz) - единица измерения частоты периодических процессов (в данном случае - колебаний). К примеру, 1 Герц - одно такое колебание (такт) в секунду.

Измерять тактовую частоту (производительность) центрального процессора в Герцах неудобно (слишком большие получаются числа). Поэтому здесь применяются такие величины, как мегагерцы и гигагерцы. Мегагерц (Mhz) это - один миллион Герц (1 000 000 Hz). Гигагерц (Ghz) это - 1000 мегагерц (Mhz) или - один миллиард Герц (1 000 000 000 Hz).

Согласно изложенному выше получается, что ЦП с тактовой частотой в 3 Гигагерца это - 3000 Мегагерц или три миллиарда герц! Условно можно сказать так, чем выше частота, тем больше инструкций можно обработать за единицу времени. Согласно описанному примеру, процессор в 3 Ghz (Ггц) может выполнять три миллиарда операций в секунду.

Для лучшего усвоения - посмотрите небольшое тематическое видео:


Посмотреть значение тактовой частоты можно, нажав правой кнопкой мыши на пикторгамме "Мой компьютер" на рабочем столе и выбрав из выпавшего меню пункт "Свойства". На скриншоте ниже приведены изображения с данной информацией для операционных систем «Windows 7» и «Windows XP».



Также этот показатель можно увидеть в процессе начальной загрузки операционной системы, зайдя в или воспользоваться одной из специализированный утилит, навроде « ». Эта замечательная программа покажет не только значение тактовой частоты, но и еще много другой полезной информации.


Примечание : достаточно подробно работу данной программы мы рассматривали , поэтому не будем повторяться.

Помните знаменитый "закон" Гордона Мура, выведенный им еще в далеком 1975-ом году: "Производительность современных процессоров должна увеличиваться вдвое каждые 24 месяца!" Надо отдать должное этому прогнозу: так оно и было, до какого-то момента. Производители процессоров просто регулярно увеличивали тактовую частоту своих устройств (на фоне прочих улучшений, в виде параллельной обработки команд, расширения списка поддерживаемых инструкций, уменьшение техпроцесса и т.д.), что позволяло поддерживать живучесть данного утверждения.

Понятно, что бесконечно так продолжаться не могло: большие частоты требуют радикальной переработки системы охлаждения стремительно нагревающегося чипа. Сам автор утверждения в 2007-ом году сказал, что, по видимому, долго "закон" не просуществует. Дело в том, что при достижении определенного порога частоты (в диапазоне от 4000 до 5000 Мегагерц) любые процессоры начинают работать не стабильно и требуют усложненную систему охлаждения.

Оверклокеры ("разгонщики" центральных процессоров) со стажем утверждают, что примерный предел разогнанного процессора с воздушным охлаждением составляет 4000-4500 Mhz. Тут надо понимать, что - это лучшие образцы чипов, наиболее удачные из партии, а таких может быть один на несколько десятков, плюс топовая материнская плата, позволяющая подать на нее повышенное напряжение и повысить частоту FSB, дорогая (оверклокерская) память с дополнительным охлаждением и т.д. Если на тот же ЦП установить водяную систему охлаждения, то можно поднять частоту до 5000, но не факт что удастся добиться при этом стабильной работы устройства во всех приложениях.

Примечание : FSB (Front Side Bus - системная или фронтальная шина), - высокоскоростной интерфейс для обеспечения взаимодействия между процессором компьютера и остальными периферийными устройствами и модулями, расположенными на материнской плате. Частота системной шины - это скорость, с которой ядро процессора обменивается данными с ОЗУ, контроллерами и т.д.

Настоящие "маньяки" своего дела не останавливаются и на этом и в ход идет "тяжелая артиллерия" наподобие охлаждения с применением фреона, жидкого металла, гелия и даже жидкого азота! Последний вариант позволяет "выжать" из несчастного устройства рекордные 6000 Мегагерц и даже больше! С другой стороны, вряд ли Вы захотите работать на компьютере, покрытом коркой льда? :)




Сейчас настал тот момент, когда частота и общее быстродействие современных компьютеров вполне достаточны для решения большинства задач рядового пользователя ПК (сейчас опускаем игры и серьезные приложения для моделирования чего-либо). Именно поэтому простое увеличение этого показателя уже не будет давать такого ощутимого прироста скорости в повседневных (офисных) задачах, как раньше. Сейчас производительность современных ПК во многом определяется другими параметрами и их сочетанием.

Одним из таких параметров является объединение под одной теплорассеивающей крышкой большого количества ядер (на данный момент их количество может достигать двенадцати штук). Тут арифметика простая: чем больше ядер, тем выше производительность (при прочих равных условиях). Ведь все процессы, в таком случае, начинают выполняться параллельно (на каждом из ядер), что (в теории) должно ощутимо повысить общее быстродействие. На практике получается... по разному:)

Некоторые из приложений просто "не знают" что можно работать с несколькими ядрами, некоторые делают это плохо и только у специально "заточенных" под многоядерность приложений наблюдается существенный прирост. Есть приложения, которые практически не поддаются распараллеливанию. Например, офисные приложения («Microsoft Word» или « »). Другие задачи, такие как кодирование видео/аудио, компиляция программного кода, рендеринг трехмерной сцены, наоборот очень чувствительны к многопоточной обработке и максимальный выигрыш получают именно при таком подходе.

Локомотивом многоядерности по праву считаются серверные варианты центральных процессоров. Это «Intel Xeon» и «AMD Opteron» соответственно. Серверные решения характеризуются повышенным быстродействием (за счет большого кеша) и масштабируемостью (могут иметь несколько физических процессоров с большим количеством ядер внутри каждого). Подобные системы энтузиасты иногда устанавливают и у себя дома на обычные материнские платы, но это скорее ради спортивного интереса:) В основном же, подобные процессоры используются в рековых серверах, которые монтируются в специальные стойки.

Примечание : (Rack - стойка/полка) Рековый монтаж (RackMount) - принцип организации коммутационного оборудования.

Вот так подобный сервер может выглядеть отдельно:




А вот так - в рековой 19-ти дюймовой стойке (ее еще называют телекоммуникационной стойкой):


Бывают даже закрывающиеся на замки целые телекоммуникационные шкафы (Protective Cabinet). Они могут выглядеть, к примеру, вот так:

Подробно о том, как подобные сервера устроены внутри, какие у них процессоры и как организована серверная комната у нас на работе мы рассматривали .

На базе подобных решений строят так называемые суперкомпьютеры. Например, компания «Intel» уже выпустила 16-ти ядерные Xeon-ы и рассматривает варианты решений с 22-24 и 28-ми ядрами. Понимаете, куда все это дело движется, да? Так что шутка команды КВН «Уральские пельмени» о 48-ми ядерном процессоре, произнесенная в 2012-м году уже не выглядит такой уж шуткой! :)

Уверен, со временем большинство приложений будет эффективно работать на многоядерных системах, сейчас пока с этим не все так радужно. Но производители центрльных процессоров упорно наращивают этот показатель и сейчас уже есть настольные системы с 12-ю ядрами. Зачем? Ну, надо же как-то оъбяснить покупателю, почему он просто обязан купить этот новый процессор?! :)

Третьим по важности компонентом центрального процессора компьютера является его кеш. Кеш - это небольшое количество очень быстрой памяти, которая расположена в самом ядре и служит для сохранения промежуточных результатов вычислений, а также может хранить в себе копии наиболее часто используемых данных из компьютера. Кеш может выполнять роль своеобразного "моста" со скоростным движением между оперативной памятью и центральным процессором компьютера.

Кеш делится на кеш инструкций (для ускорения загрузки машинного кода) и кеш данных, обслуживающий пользовательские запросы. Последний часто имеет несколько уровней (Level 1, Level 2 и Level 3). Каждый последующий уровень больше (по объему памяти) предыдущего, но медленнее по быстродействию. Почему именно так? Думается, для удешевления конечного продукта:) Но свое такая конструкция дает, - существенное снижение задержек обращения CPU к оперативной памяти. Это своеобразный буфер между ней и ЦПУ.

Есть специфические задачи, где кеш процессора отыгрывает не последнюю роль. Считается, что к таковым относится процесс архивирования массивов информации и устройства с большим и быстрым кешем справляются с ней лучше.

Как мы видим, сами по себе ни частота, ни многоядерность, ни большой кеш не гарантируют нам повышения быстродействия абсолютно во всех задачах! Где-то достаточно будет просто большой скорости (частоты), где-то потребуется многозадачность - выполнение операции параллельно на нескольких ядрах. Тут нужен комплексный подход и тонкий баланс между всеми составляющими.

Идем дальше! Поскольку ЦП работает, на него подается . Это приводит к тому, что он греется. Чтобы избежать такого неприятного явления, как компьютера на него устанавливают различные системы охлаждения (бесшумные водяные или же на основе воздушного охлаждения, снабженные вентиляторами).

Несмотря на постоянное уменьшение технологического процесса и оптимизацию энергопотребления, топовые модели процессоров упорно штурмуют планку TDP в 200 Ватт, а некоторые (AMD) ее уже успешно покорили! Можно ли подобное "достижение" однозначно назвать победой? Не думаю:)

Каждый из производителей дает своему новому изделию кодовое название, которое характеризует целую линейку или семейство продуктов, основанную на одной микроархитектуре. В недалеком прошлом использовались такие звучные названия, как «Coppermine», «Wolfdale», «Barton», «Nahalem», «Prescott», «Conroe», «Sandy Bridge».

Именно микроархитектура ядра и определяет, какие из новых технологий будут заложены в будущий процессор. Например: аппаратная (на уровне "железа") поддержка технологии виртуализации (Visualization Technology), защита от переполнения буфера (Intel Execute Disable Bit), «AMD Turbo Core» автоматический управляемый разгон процессора (аналог TurboBoost от Intel), различные варианты инструкций SSE и 3D Now и т.д.

Сейчас модно говорить не про CPU, а про APU (Accelerated Processor Unit - ускоренный процессор). Что это такое? Это объединение на одном кристалле или просто под одной теплораспределительной крышкой собственно ЦПУ и видеокарты. Подобные решения еще иногда называют гибридными процессорами. Результатом этого являются снижение общего энергопотребления и стоимости системы за счёт сокращения числа комплектующих (внешняя видеокарта уже не нужна).

Понятно, что подобная система не может тягаться с полноценным игровым компьютером, но для большинства задач очень даже подходит. Учитывая то, что в 2006-м году известная компания «AMD» купила не менее известную компанию по производству графических ускорителей «ATI», то логично, что ее APU выглядят более предпочтительно (именно за счет графической составляющей). Компания «Intel» никогда графикой серьезно не занималась, ее конек - центральные процессоры и на этом поле ей нет равных!

Что еще можно сказать о процессорах в прикладном плане? Вам, как потенциальному покупателю, не лишним будет знать, что их можно приобрести в двух разных вариантах поставки: «Box» (Бокс) и «Tray» (Трэй). Бокс это - коробочная поставка:


Давайте посмотрим, что находится внутри коробки?


Мы видим здесь упакованную в защитный пластик систему охлаждения (снизу) и сам центральный процессор компьютера (обведен красным). Обратите внимание, что в боксовой поставке на нижнюю поверхность радиатора охлаждения уже нанесен термоинтерфейс (теплопроводящее вещество в виде трех серых полосок). Термоинтерфейс служит для лучшей передачи тепла с ядра кристалла на радиатор. Нам остается только вскрыть упаковку и на плату.

Если же Вы решили приобрести процессор в поставке трэй, то будьте готовы к тому, что его могут вынести Вам в полиэтиленовом кулечке:) Вы покупаете отдельно только сам чип, без системы охлаждения. Зачем это может быть нужно? К примеру, я делал так, когда собирал свой . Стандартное (боксовое) охлаждение мне не нравилось и я решил установить вместо него систему башенного типа. Зачем переплачивать за ненужный кусок алюминия с вентилятором, который потом будет лежать без дела?

Напоследок небольшая ремарка из личного опыта: в современных играх процессор - не главное. Основная нагрузка ложиться на внешнюю видеокарту, поэтому если Вы собираетесь производить модернизацию (апгрейд) своего компьютера именно с этой целью, то в первую очередь обратите внимание именно на его графическую подсистему. Почему я так уверенно об этом заявляю? Потому что сделав именно так (оставив старый процессор и купив новый GPU), я получил абсолютно адекватное быстродействие во всех играх 2015-го года! А вот и от года 2017-го! :-)


Программа имеет различные режимы тестирования, а результаты ее работы Вы можете видеть в режиме реального времени в форме удобных, наглядных графиков.


Или - в виде таблицы:




Также здесь присутствует режим тестирования видеокарты. Программа "крутит бублик" (кто в теме, тот поймет) :)




Как всегда, описываемую нами программу можете загрузить прямо и пусть Ваш "камень" всегда работает без сбоев!

Вот теперь у меня действительно все! Переходите к изучению других разделов нашего сайта. Чуть ниже можете посмотреть видео о том, как производят процессоры:

Немаловажный вопрос от пользователей, который я откладывал на потом, что такое процессор в компьютере? Центральный процессор (CPU) – важнейшая часть аппаратного обеспечения любого компьютера, отвечающая за выполнение необходимых арифметических операций, заданных программами, координирующая работу всех, без исключения, .

Безусловно, процессор – сердце каждого компьютера. Именно процессор выполняет инструкции программного обеспечения, использующегося на персональном компьютере, обрабатывает набор данных и производит сложные вычислительные операции. Главными характеристиками процессора являются: производительность, тактовая частота, энергопотребление, архитектура и кэш.

Итак, мы с вами поняли, что такое процессор, но какие бывают виды и для чего нужен процессор в компьютере? Давайте, обо всем по порядку. Известно, что процессоры бывают одноядерные и многоядерные . Многоядерным процессором называется центральный процессор, содержащий два (и больше) вычислительных ядра, размещенных на одном небольшом процессорном кристалле или в одном общем корпусе. Обычный процессор имеет только одно ядро. Эпоха одноядерных процессоров понемногу уходит в прошлое. По своим характеристикам они, в целом, проигрывают многоядерным процессорам.

Например, тактовая частота средненького двухъядерного процессора нередко может быть намного ниже частоты неплохого одноядерного процессора, но из-за разделения задач на «обе головы», разница в результатах становится несущественной. Двухъядерный процессор Core 2 Duo с тактовой частотой 1,7ГГц легко сможет обскакать одноядерный Celeron с тактовой частотой 2,8ГГц, ведь производительность зависит не от одной лишь частоты, но и от количества ядер, кэша и других факторов.

На сегодняшний момент на мировом компьютерном рынке лидируют два крупнейших производителя процессоров — корпорация Intel (ее доля на сегодня порядка 84%) и компания AMD (около 10%). Если взглянуть на историю развития центральных процессоров, то можно увидеть довольно много интересного. Начиная с появления первых настольных компьютеров, основным способом повысить производительность было планомерное повышение тактовой частоты.

Это весьма очевидно и логично. Однако всему есть предел и частоту невозможно наращивать до бесконечности. К сожалению, с увеличением частоты начинает нелинейно возрастать тепловыделение, достигающее, в конечном итоге, критически высоких значений. Пока решить эту проблему не помогает даже применение более тонких технических процессов в создании транзисторов.

Существует ли выход из этой очень непростой ситуации? Вскоре выход был найден в применении нескольких ядер в одном кристалле. Решено было применить вариант процессора «2 в 1». Появление на рынке компьютеров с такими процессорами вызвало целый ряд споров. Нужны ли многоядерные процессоры? Чем они лучше обычных процессоров, имеющих одно ядро? Может компании-производители просто хотят получить дополнительную прибыль? Сейчас уже можно уверенно ответить: многоядерные процессоры нужны, за ними будущее. В ближайшие десятилетия невозможно представить прогресса в этой отрасли без применения многоядерных процессоров.

Многоядерные процессоры, чем же хороши? Использование таких процессоров сравнимо с применением нескольких отдельных процессоров для одного компьютера. Ядра находятся в одном кристалле, они не являются полностью независимыми (к примеру, используют общую кэш-память). При применении имеющегося программного обеспечения, созданного изначально для работы с одним ядром, такой вариант даёт ощутимый плюс. Вы сможете запустить одновременно две (и более) ресурсоёмкие задачи без малейшего дискомфорта. Однако, ускорение единственного процесса – задание для этих систем фактически непосильное. В итоге, мы получаем почти тот же одноядерный процессор с небольшим плюсом в виде возможности задействования нескольких программ одновременно.

Как же быть? Выход из этой щекотливой ситуации вполне очевиден – требуется разработка нового поколения программного обеспечения, способного задействовать одновременно несколько ядер. Необходимо как-то распараллелить процессы. В реальности это оказалось весьма непросто. Конечно, некоторые задачи, возможно, довольно легко распараллелить. Например, относительно просто можно распараллелить кодирование видео и аудио.

Здесь в основе находится набор однотипных потоков, соответственно, организовать их одновременное выполнение – задача довольно простая. Выигрыш существующих многоядерных процессоров в решении задач кодирования перед «аналогичными» одноядерными будет пропорционален количеству этих ядер: если два ядра, то вдвое быстрее, четыре ядра – в четыре раза, 6 ядер – в шесть раз. К сожалению, подавляющую часть важных задач распараллелить гораздо сложнее. В большинстве случаев необходима серьезная переработка программного кода.

Уже несколько раз от представителей довольно мощных компьютерных компаний звучали радостные высказывания об удачной разработке оригинальных многоядерных процессоров нового поколения, которые способны самостоятельно разделять один поток на группу независимых потоков, но, к глубокому сожалению, никто из них пока не продемонстрировал ни одного подобного рабочего образца.

Шаги компьютерных компаний на пути к массовому использованию многоядерных процессоров весьма очевидны и незамысловаты. Основным заданием этих компаний является совершенствование процессоров, создание новых перспективных многоядерных процессоров, ведение продуманной ценовой политики, направленной на снижение цен (или сдерживание их роста). На сегодня, в среднем сегменте двух ведущих мировых компьютерных гигантов (AMD и Intel) можно увидеть очень широкое разнообразие двухъядерных и четырехъядерных процессоров.

При желании, можно найти еще более навороченные варианты. Радует то, что немаловажный шаг на пути к пользователю начинают делать сами разработчики современного программного обеспечения. Многие последние игры уже обзавелись поддержкой двух ядер. Самым мощным из них практически жизненно важен минимум двухъядерный процессор для обеспечения и поддержания оптимальной производительности.

Окинув взглядом прилавки лучших компьютерных магазинов, проанализировав положение дел с ассортиментом, можно сказать, что общая картина вовсе не плоха. Производителям многоядерных процессоров удалось достичь весьма высокого уровня выпуска годных кристаллов. Ценовая политика ими проводится довольно разумная. По существующим ценам видно, что, например, увеличение числа ядер процессора в два раза обычно не приводит к двойному повышению цены такого процессора для покупателя. Это весьма разумно и вполне логично. К тому же, многим совершенно ясно, что при увеличении количества ядер центрального процессора вдвое производительность в среднем возрастает далеко не в столько же раз.

Все же, стоит признать, что, несмотря на всю тернистость пути к созданию еще более совершенных многоядерных процессоров, альтернативы ему в ближайшем обозримом будущем просто-напросто нет. Рядовым потребителям, желающим идти в ногу со временем, остается лишь своевременно модернизировать свой компьютер, применяя новые процессоры с увеличенным числом встроенных ядер, выводя таким способом общую производительность на более высокий уровень. Различные одноядерные процессоры еще успешно применяются в мобильных телефонах, нетбуках и другой технике.

Если вы не знаете, где он находится, читайте статью: « ». Напишите в комментариях какой у вас процессор?


Процессор – это основной элемент компьютера, с помощью которого обрабатывается информация, находящаяся как в собственной памяти, так и в памяти других устройств. Помимо этого, он так же руководит работой других устройств. Чем мощнее процессор, тем быстрее работает компьютер в целом.

Работа различных приложений основана на выполнении определенной последовательности команд и данных, размещенных в так называемых регистрах процессора. Мощность, и как следствие быстродействие компьютера, определяется скоростью сопоставления данных и соответствующих команд для их обработки. Основными характеристиками, отличающими различные виды процессоров, являются тактовая частота, разрядность и размер внутренней кэш – памяти.


От чего зависит производительность

Тактовая частота

Тактовая частота, измеряющаяся в мегагерцах (МГц) это количество выполняемых операций в секунду. Однако по факту, выполнение одной операции может быть разделено на несколько тактов, при этом возможно фактическое снижение ее значения. Однако при мощности современных процессоров незначительное снижение тактовой частоты в ходе выполнения сложных операций совершенно незаметно.

Разрядность

От этого параметра зависит, поддерживает ли процессор только 32-битные приложения или допускает использование 64–битных. Большинство современных процессоров поддерживают 64–битную архитектуру. Подобное разделение влияет на количество доступной оперативной памяти (до 4 ГБ в 32-битных и от 4 ГБ в 64-битных системах) а также на внутренние параметры, которые редко учитываются рядовыми пользователями и имеют значение только для специалистов, например, разработчиков программного обеспечения.

От объема внутренней кэш – памяти зависит скорость обмена информацией между процессором и другими устройствами, установленными на компьютере. Чем больше это значение, тем быстрее происходит обмен.

Итак, как же выбрать процессор для нового компьютера. Если вы решили собрать новый системный блок, в первую очередь стоит обратить внимание на марку CPU, так как от этого напрямую зависит тип характеристики основных устройств, главное из которых .

От этих параметров напрямую зависит быстродействие будущей системы. Существует также различие по количеству вычислительных ядер процессоров. Так, многоядерные процессоры – это устройства, в едином корпусе которых установлены более одного ядра. Это позволяет существенно увеличить быстродействие компьютера.

При выборе того или иного компонента ПК, необходимо точно ответить на один вопрос. Для чего компьютер будет использоваться в будущем? Только после этого стоит определяться с производителем, ценой и функционалом CPU. При полной замене системы, мы советуем не экономить сильно и выбирать компоненты на основании текущего состояния на рынке. Такой подход сэкономит деньги в будущем, поскольку сбалансированный и технологически новый компьютер прослужит дольше и будет справляться со своими функциями продолжительное время.

Какой лучше купить

На сегодняшний день главными производителями процессоров являются Intel и AMD. Процессоры от Intel отличаются более высоким качеством и производительностью, однако при этом достаточно дороги, что не всегда оправдано, например, при покупке бюджетных моделей. Для установки продукции Intel используются материнские платы, оснащенные следующими типами сокетов: 478, 775 для устаревших моделей и 1155, 1156, 1366 для новейших процессоров серии I3, I5 и I7.

Однако следует сказать, что процессоры использующие 478 сокет уже сильно устарели и практически не используются, так как их мощности уже недостаточно для выполнения современных задач. По причине морального устаревания постепенно уходит в прошлое 775 сокет, хотя некоторые процессоры этой линейки позволяют решать большинство современных задач.

Процессоры от AMD отличаются достаточно выгодным соотношением цена/качество, однако при этом некоторые модели, склонны к излишнему перегреву. Несмотря на технологическое отставание, и не всегда высокое качество, продукция AMD пользуется неплохим спросом на российском рынке, что обусловлено, в первую очередь, именно низкой по сравнению с главным конкурентом ценой. Для установки процессоров от AMD используются материнские платы, оснащенные сокетами AM2, AM 2+ и AM3 для новейших процессоров.

Установка процессора

И вот, выбор сделан и процессор приобретен. Далее необходима установка процессора на материнскую плату. Обратите особое внимание, что при установке процессора необходимо соблюдать особую осторожность, так как всего лишь одно неверное движение может повлечь серьезные повреждения оборудования. Прежде всего, необходимо разместить материнскую плату на какой-либо поверхности в устойчивом положении. У различных моделей материнских плат разные механизмы крепления процессора, но как правило для доступа к сокету необходимо несильно надавить на специальный рычажок и отвести его в сторону.

На современных материнских платах для установки процессора предусмотрены специальные направляющие, поэтому вставить процессор неправильно практически невозможно. Однако на более ранних моделях это может вызвать затруднения, так как не всегда можно с первого взгляда определить направление установки.

Не включайте компьютер, если полностью не уверены в правильности установки процессора! Неправильно расположенный в сокете процессор скорее всего сгорит.

После установки приведите специальный рычажок на материнской плате в исходное положение. Далее необходимо установить элемент системы охлаждения процессора – кулер. Помните, что перед этим необходимо нанести на сам процессор и на контактную пластину кулера тонкий слой специального состава, увеличивающего эффективность охлаждения – термопасты.

Для кулеров существуют различные зажимы, обеспечивающие плотное прилегание контактной пластины к самому процессору. Крепление может осуществляться за счет винтов, специальных зажимов или крепления куллера к материнской плате с помощью составной пластины.


Убедитесь, что контактная пластина кулера плотно прилегает к процессору, в противном случае возможен перегрев и как следствии выгорание не только самого CPU, но и материнской платы.

Замена процессора

Если Вас перестала устраивать производительность компьютера, то скорее всего происходит это именно по причине недостаточной мощности ЦП. Это можно компенсировать установкой дополнительных плат оперативной памяти, увеличив ее объем, однако при этом рассчитывать на качественное увеличение производительности системы не нужно.

Перед установкой нового процессора необходимо убедиться, что материнская плата оснащена соответствующим сокетом и допускает использование данной модели ЦП.

Для корректной работы некоторых моделей на устаревших материнских платах может потребоваться обновление BIOS. При установке нового устройства нужно соблюдать крайнюю осторожность, так как неосторожное движение может привести к повреждению оборудования!

Для начала необходимо аккуратно отсоединить кулер, расположенный на сокете материнской платы и извлечь процессор. Затем поместить новое устройство в гнездо, покрыть тонким слоем термопасты внешнюю часть процессора и установить кулер на место. В случае замены центрального процессора, остальные комплектующие, как правило, не требуют обновления и продолжают работать в штатном режиме. постарается поможет с подбором процессора под любой компьютер, задавайте вопросы в комментариях.

Вероятно, выбирая компьютер и изучая его характеристики вы заметили, что такому пункту как процессор придают большое значение. Почему именно ему, а не модели , блока питания, или ? Да, это тоже важные компоненты системы и от их правильного подбора также многое зависит, однако характеристики ЦП напрямую и в большей степени влияют на скорость и производительность ПК. Давайте разберем значение этого устройства в компьютере.

А начнем с того, что уберем процессор из системного блока. В итоге компьютер не будет работать. Теперь понимаете, какую роль он играет? Но давайте более детально изучим вопрос и узнаем что такое процессор компьютера.

Что такое процессор компьютера

Вся суть в том, что центральный процессор (его полное название) – как говорят, самое настоящее сердце и одновременно мозг компьютера. Пока он работает, работают и все остальные составляющие системного блока и подключенная к нему периферия. Он отвечает за обработку потоков различных данных, а также регулирует работу частей системы.

Более техническое определение можно найти в Википеди:

Центральный процессор - электронный блок либо интегральная схема (микропроцессор), исполняющая машинные инструкции (код программ), главная часть аппаратного обеспечения компьютера или программируемого логического контроллера.

В жизни ЦПУ имеет вид небольшой квадратной платы размером со спичечный коробок толщиной в несколько миллиметров, верхняя часть которого как, как правило, прикрыта металлической крышкой (в настольных версиях), а на нижней расположено множество контактов. Собственно, дабы не распинаться, посмотрите следующие фотографии:


Без команды, отданной процессором, не может быть произведена даже такая простая операция, как сложение двух чисел, или запись одного мегабайта информации. Все это требует немедленного обращения к ЦП. Что уж до более сложных задач, таких как запуск игры, или обработка видео.

К словам выше стоит добавить, что процессоры могут выполнять и функции видеокарты. Дело в том, что в современных чипах отведено место для видеоконтроллера, который выполняет все необходимые от нее функции, а как видеопамять использует . Не стоит думать, что встроенные графические ядра способны конкурировать с видеокартами хотя бы среднего класса, это больше вариант для офисных машин, где мощная графика не нужна, но все же потянуть что-то слабое им по зубам. Главным же достоинством интегрированной графики является цена — все же отдельную видеокарту покупать не нужно, а это существенная экономия.

Как работает процессор


В предыдущем пункте было разобрано, что такое процессор и для чего он нужен. Самое время посмотреть на то, как это работает.

Деятельность ЦП можно представить последовательностью следующих событий:

  • Из ОЗУ, куда загрузилась определенная программа (допустим текстовый редактор), управляющий блок процессора извлекает необходимые сведения, а также набор команд, которые обязательно нужно выполнить. Все это отправляется в буферную память (кэш) ЦП;
  • Выходящая из кэш-памяти информация разделяется на два вида: инструкции и значения , которые отправляются в регистры (это такие ячейки памяти в процессоре). Первые идут в регистры команд, а вторые в регистры данных;
  • Информацию из регистров обрабатывает арифметико-логическое устройство (часть ЦПУ, которая выполняет арифметические и логические преобразования поступающих данных), которое из них считывает информацию, а за тем исполняет необходимые команды над получившимися в итоге числами;
  • Получившиеся результаты, разделяющиеся на законченные и незаконченные , идут в регистры, откуда первая группа отправляется в кэш-память ЦП;
  • Этот пункт начнем с того, что есть два основных уровня кэша: верхний и нижний . Последние полученные команды и данные, нужные для выполнения расчетов, поступают в кэш верхнего уровня, а неиспользуемые отправляются в кэш нижнего уровня. Этот процесс идёт следующим образом — вся информация идёт с третьего уровня кэша на второй, а потом попадает на первый, с не нужными на текущий момент данными и их отправкой на нижний уровень все обстоит наоборот;
  • По окончанию вычислительного цикла, конечный итог будет записан в оперативной памяти системы, для освобождения места кэш-памяти ЦП для новых операций. Но может произойти так, что буферная память будет переполнена, тогда неэксплуатируемые данные пойдут в оперативную память, или на нижний уровень кэша.

Поэтапные шаги вышеприведенных действий являются операционным потоком процессора и ответом на вопрос – как работает процессор.

Виды процессоров и основные их производители


Существует множество видов процессоров от слабых одноядерных, до мощных многоядерных. От игровых и рабочих до средних по всем параметрам. Но, есть два основных лагеря ЦП – AMD и знаменитые Intel. Это две компании, производящие самые востребованные и популярные микропроцессоры на рынке. Основное различие между продукцией AMD и Intel – не количество ядер, а архитектура – внутреннее строение. Каждый из конкурентов предлагает свое строение «внутренностей», свой вид процессора, кардинально отличающуюся от конкурента.

У продуктов каждой из сторон есть свои плюсы и минусы, предлагаю кратко ознакомиться с ними поближе.

Плюсы процессоров Intel :

  • Обладает более низким потреблением энергии;
  • Разработчики больше ориентируются на Интел, чем на АМД;
  • Лучше производительность в играх;
  • Связь процессоров Интел с ОЗУ реализована лучше, нежели у АМД;
  • Операции, осуществляемые в рамках только одной программы (на пример разархивирование) идут лучше, АМД в этом плане поигрывает.

Минусы процессоров Intel :

  • Самый большой минус – цена. ЦП от данного производителя зачастую на порядок выше чем у их главного конкурента;
  • Производительность снижается при использовании двух и более «тяжелых» программ;
  • Интегрированные графические ядра уступают АМД;

Плюсы процессоров AMD :

  • Самый большой плюс — самый большой минус Intel – цена. Вы можете купить хороший середнячок от AMD, который будет на твердую 4, а может даже и 5 тянуть современные игры, при этом стоить он будет намного ниже чем аналогичный по производительности процессор от конкурента;
  • Адекватное соотношение качества и цены;
  • Обеспечивают качественную работу системы;
  • Возможность разгона процессора, повышая тем самым его мощность на 10-20%;
  • Интегрированные графические ядра превосходят Интел.

Минусы процессоров AMD :

  • Процессоры от АМД хуже взаимодействуют с ОЗУ;
  • Энергопотребление больше, чем у Интел;
  • Работа буферной памяти на втором и третьем уровне идёт на более низкой частоте;
  • Производительность в играх отстает от показателей конкурента;

Но, несмотря на приведенные достоинства и недостатки, каждая из компаний продолжает развиваться, их процессоры с каждым поколением становятся мощнее, а ошибки предыдущей линейки учитываются и исправляются.

Основные характеристики процессоров

Мы рассмотрели, что такое процессор компьютера, как он работает. Ознакомились с тем, что из себя представляют два основных их вида, время обратить внимание на их характеристики.

Итак, для начала их перечислим: бренд, серия, архитектура, поддержка определенного сокета, тактовая частота процессора, кэш, количество ядер, энергопотребление и тепловыделение, интегрированная графика. Теперь разберем с пояснениями:

  • Бренд – кто производит процессор: AMD, или Intel. От данного выбора зависит не только цена приобретения, и производительность, как можно было бы предположить из предыдущего раздела, но также и выбор остальных комплектующих ПК, в частности, материнской платы. Поскольку процессоры от АМД и Интел имеют различную конструкцию и архитектуру, то в сокет (гнездо для установки процессора на материнской плате) предназначенный под один тип процессора, нельзя будет установить второй;
  • Серия – оба конкурента делят свою продукцию на множество видов и подвидов. (AMD — Ryzen, FX,. Intel- i5, i7);
  • Архитектура процессора – фактически внутренние органы ЦП, каждый вид процессоров имеет индивидуальную архитектуру. В свою очередь один вид можно разделить на несколько подвидов;
  • Поддержка определенного сокета - очень важная характеристика процессора, поскольку сам сокет является «гнездом» на материнской плате для подсоединения процессора, а каждый вид процессоров требует соответствующий ему разъем. Собственно об этом было сказано выше. Вам либо нужно точно знать какой сокет расположен на вашей материнской плате и под нее подбирать процессор, либо наоборот (что более правильно);
  • Тактовая частота – один из значимых показателей производительности ЦП. Давайте ответим на вопрос что такое тактовая частота процессора. Ответ будет простым для этого грозного термина — объем операций выполняющихся в единицу времени, измеряющийся в мегагерцах (МГц);
  • Кэш - установленная прямо в процессор память, её ещё называют буферной памятью, имеет два уровня — верхний и нижний. Первый получает активную информацию, второй – неиспользуемую на данный момент. Процесс получения информации идет с третьего уровня во второй, а потом в первый, ненужная информация проделывает обратный путь;
  • Количество ядер - в ЦП их может быть от одного до нескольких. В зависимости от количества процессор будет называться двухъядерных, четырех ядерным и т.д. Соответственно от их числа будет зависеть мощность;
  • Энергопотребление и тепловыделение. Тут все просто – чем выше процессор «съедает» энергии, тем больше тепла он выделит, обращайте внимание на этот пункт, чтобы выбрать соответствующий кулер охлаждения и блок питания.
  • Интегрированная графика – у AMD первые такие разработки появились в 2006, у Intel с 2010. Первые показывают больший результат, чем конкуренты. Но все равно, до флагманских видеокарт пока ни один из них не смог дотянуть.

Выводы

Как вы уже поняли центральный процессор компьютера играет важнейшую роль в системе. В сегодняшней статье мы с вами разобрали, что такое процессор компьютера, что такое частота процессора, какие они бывают и для чего нужны. Как сильно одни ЦП отличаются от других, какие виды процессоров бывают. Поговорили о плюсах и минусах продукции двух конкурирующих между собой кампаний. Но с какой характеристикой процессор будет стоять в вашем системном блоке решать только вам.

CPU — центральный процессор является основным компонентом, «мозгом» компьютера и определяет его самые основные характеристики. «то большая интегральная схема (БИС), сформированная на кристалле кремния. Большая интегральная схема не по размеру, а по количеству элементов – транзисторов, включенных в нее.

Скачать презентацию «Процессор»

Микропроцессор содержит миллионы транзисторов, соединенных между собой тончайшими проводниками из алюминия или меди. В 1965Г. Гордон Мур сделал смелое предсказание: число транзисторов, размещаемых на кристалле ИС, будет удваиваться приблизительно каждые 2 года. Отрасль развивалась почти в точном соответствии с этим прогнозом, получившим название закона Мура. Но впервые за 43г нарушен закон, благодаря новым методам производства микросхем, когда можно разместить 30млн. транзисторов на участке кристалла с булавочную головку. в 2006г. процессор Core 300млн. транзисторов, начало 2007г. 800 млн транзисторов в двух ядерных системах.

Изготовление микропроцессора

Это сложнейший технологический процесс, включающий в себя несколько сотен этапов. Микропроцессоры формируются на поверхности тонких пластин Кремния, которые нарезают из длинных цилиндрических кристаллов кремния, выращенных из расплава кремниевого песка. Кремний обладает полупроводниковыми свойствами, его проводимостью Можно управлять путем введения примесей. В процессе изготовления микросхем на пластины-заготовки наносятся тончайшие слои различных материалов. На них фотолитографическим способом слой за слоем формируют «рисунок» будущей микросхемы. В ходе следующей операции, называемой легированием, открытые участки кремниевой пластины бомбардируют ионами различных химических элементов, которые формируют в кремнии микроскопические участки, имеющие различную электрическую проводимость. Каждый слой процессора имеет свой собственный рисунок, в совокупности все эти слои образуют трехмерную структуру процессора. После этого пластины разрезают на отдельные микросхемы, которые проходят тщательное тестирование, чтобы проверить качество выполнения всех технологических операций. Заготовки, в которых обнаруживаются неисправности, просто выбраковываются, поскольку не существует способов исправления ошибок. Затем каждый кристалл помещают в защитный корпус и припаивают к нему выводы.

В логический состав ЦП входят след. устройства:

  1. устройство управления (УУ) — блок упр-я. Управляет работой всех устройств по зад. программе
  2. АЛУ (арифметико-логическое устройство) вычислительный инструмент процессора.
  3. регистры процессорной памяти – внутренняя память процессора. Регистры используются для временного хранения выполняемой команды, адресов памяти, обрабатываемых данных и другой внутренней информации микропроцессора. Каждый их регистров служит своего рода черновиком, используя который процессор выполняет расчеты и сохраняет промежуточные результаты. У каждого регистра есть определенное назначение.IP – счетчик команд (помещается адрес той ячейки памяти ЭВМ, в которой хранится очередная исполняемая команда программы.CS – регистр команд, помещается сама команда на время ее исполненияDI SI BP – индексные регистры, указатели сдвигов в сегментах.AX BX – общего назначенияSS – стека (Стек- область, используемая для временного хранения данных. Стек содержится в отдельном сегменте, который называется сегментом стека)DS — дополнительный

Рассмотрим принципы работы современных процессоров

Микропроцессор представляет собой сложное электронное устройство для выполнения различных операций. Любой процессор поддерживает определенный набор команд, которые может исполнять, и содержит набор внутренних ячеек памяти, регистров, с которыми может работать гораздо быстрее, чем с внеш-ней памятью. Возможности ПК, как универсального исполнителя по работе с информацией определяется системой команд процессора. Эта система команд представляет собой язык машинных команд. (ЯМК) Из языка ЯМК составляются программы управления работой компьютера. Отдельная команда представляет отдельную операцию (действие) компьютера. В ЯМК существуют операции по которым выполняется арифметич. , логич. операции, перации управления последовательностью команд, операции передачи данных из одних устройств памяти в другие и пр. Различают два типа архитектуры микропроцессоров – CISC и RISC.

CISC

CISC (Complex Instruction Set Computer) подразумевает, что процессор поддерживает очень большой набор команд (более 200) (полную систему команд) и имеет небольшое число регистров. Реализующие на уровне машинного языка комплексные наборы команд различной сложности (от простых, характерных для микропроцессора 1-го поколения, до значительной сложности, характерных для современных процессоров.

RISC

В свою очередь RISC-архитектура (Reduced Instruction Set Computer) означает ограниченный набор ко-манд и большое число внутренних регистров. Все команды работают с операндами и имеют одинаковый формат. Обращение к памяти выполняется с помощью специальных команд загрузки регистра и записи. Простота структуры и небольшой набор команд позволяет реализовать полностью их аппаратное выполнение и эффективный конвейер при небольшом объеме оборудования. Высокая степень дробления конвейера. Споры о том, что лучше, идут до сих пор. RISC-процессор работает быстрее, т. к. команды простые. И стоят дешевле, но программы для них занимают больше места, чем для CISC. Именно поэтому в условиях дефицит оперативной памяти первоначальное развитие процессоров для персональных компьютеров пошло в направлении CISC-архитектуры Все процессоры, совместимые с набором команд х86 являются CISC процессорами, хотя некоторые могут иметь элементы RISC-архитектуры. Микропроцессоры 5 поколения имеют 64разрядную шину данных и адресов. Могут работать с 8,16,32 битными данными, поддерживают конвейерную структуру и обладают возможностью предсказывать направление переходов в программе. Процессоры, обладающие немного большими возможностями, как правило, относят к шестому поколению. Рассмотрим основные принципы работы современных процессоров. Прежде всего отметим, что процессор выполняет программу, которая хранится в памяти, Программа представляет собой набор команд (инструкций) и данных. Последовательно считывая команды процессор выполняет соответствующие действия. Каждая команда представлена несколькими байтами, причем длина ее не фиксирована и может составлять от 1 по 15.

Характеристики ЦП

  1. Тактовая частота - это основная характеристика процессора, которая определяет его возможности и производительность системы в целом. Каждый тип процессора выпускается в виде целой линейки (семейства) моделей, отличающихся различными характеристиками и, прежде всего, тактовой частотой. Так, процессор Pentium IV может выпускаться в различных модификациях с тактовой частотой от 2,0 До 3,8 МГц. Тактовая частота процессора определяется двумя факторами: частотой системной шины и внутренним множителем процессора (внутренней тактовой частотой). Первый параметр фактически не зависит от самого процессора, а определяется системной платой, точнее ее чипсетом. Системные платы могут выпускаться с разными частотами - от 256 до 800 МГц. Процессор работает в тесном контакте с микросхемой, которая называется генератором тактовой частоты. ГТЧ вырабатывает периодические импульсы, синхронизирующие работу всех узлов компьютера. Это своеобразный метроном внутри ПК. В ритме этого метронома работает ЦП. Тактовая частота равна количеству тактов в секунду. Такт – промежуток времени между началом подачи текущего импульса и началом подачи следующего. На выполнение процессором каждой операции отводится определенное количество тактов. Измеряется в МГц.
  2. Техшаг
    Процессор состоит из многих миллионов транзисторов. Их можно условно представить себе в виде точек в узлах прямоугольной сетки - как зерна люминофора на экране электронно-лучевой трубки (ЭЛТ). Расстояние между транзисторами про¬цессора определяется используемой технологией производства и в настоящее время составляет 0,09 мк или 90 нм. Чем меньше это расстояние, тем лучше. Уменьшение размеров транзистора влечет за собой уменьшение шага, а значит, уменьшается мощность тепловыделения и себестоимость изготовления, увеличивается максимально достижимая частота процессора.
  3. Разрядность процессора
    Разрядностью называют максимальное количество разрядов двоичного кода, которые могут обрабатываться или передаваться процессором одновременно. Разрядность процессора определяется разрядностью его регистров, в которые помещаются обрабатываемые данные. Например разрядность регистра 2 байта – 16 бит, то разрядность ЦП – 16., 8 байт -64 Ячейка – группа последовательных байтов ОЗУ, вмещающая в себя информацию, доступную для обработки отдельной командой процессора. Содержимое ячейки память называется машинным словом. Очевидно, что размер ячейки памяти и машинного слова равен разрядности процессора. Обмен информацией между ЦП и внутренней памятью производится машинными словами. Адрес ячейки памяти – равен адресу мл. байта (байта с наименьшим номером), входящего в ячейку. Адресация как байтов, так и ячеек начинается с 0. Адреса ячеек кратны количеству байтов в машинном слове.Итак, Ячейка – вместилище информации, машинное слово – информация в ячейке.
  4. Адресное Пространство
    По адресной шине процессор передает адресный код – двоичное число, обозначающее адрес ячейки памяти или внешнего устройства, куда направляется информация по шине данных. Адресное пространсство – это диапазон адресов (множество адресов) к которым может обратиться процессор, используя адресный код. Если адресный код содержит n – бит, то размер адресного пространст-ва 2 n байт Обычно размер адресного кода = количеству линий в адресной шине (разрядности адресной шины)
  5. Архитектура ЦП — конструкция процессора и имеющаяся система команд (инструкций)К архитектуре относятся следующие элементы:а) Система команд и способы адресацииб) Возможности совмещения выполнения команд во временив) Наличие дополнительных узлов и устройств в составе МПг) Режимы работы процессораа) Система команд представляет собой совокупность команд, которые могут выполняться процессором. х86, MMX SSE SSE2 SSE3 3DNOWб)
  6. Конвейер
    Сегодняшние процессоры обеспечивают совмещение выполнения нескольких последовательно расположенных команд во времени, образуя конвейерную обработку. Процессор разделяет выполнение команды на этапы.
    Например Pentium — на 5 этапов:
    1) прочитать из памяти часть программы (выборка, считывание команды из ОЗУ или КЭШа)
    2) определить длину инструкции (декодирование и дешифрирование команды, т.е. определение кода выполняемой операции)
    3) определить адрес ячейки памяти, если она используется в данной команде
    4) выполнить команду 5) сохранить полученный результат. Каждый этап называется ступенью. Получается 5-ступенчатый конвейер.
    При конвейерной обработке на выполнение каждого этапа отводится 1 такт тактовой частоты. В каждом новом такте заканчивается выполнение одной команды и начинается выполнение новой. Этот процесс называется поточной обработкой . Общее время выполнения команды в конвейере с 5 ступенями будет составлять 5 периодов тактовой частоты. В каждом такте конвейер будет одновременно обрабатывать 5 различных команд. Итак, конвейеризация повышает производительность процессора, но она не сокращает время выполнения отдельной команды . Выигрыш получается за счет того, что обрабатывается сразу несколько команд.
    Суперскалярный процессор
    наличие — двух конвейеров.
    Суперконвейерный — более 5 этапов в конвейере Подобное решение резко повышало производительность ЦП. Применяется много конвейерная обработка. Практически все инструкции могут выполняться параллельно, за исключением операций с плавающей точкой и команд переходов. Суперсклярный и суперконвеерный означает наличие более двух конвейеров и более пяти этапов в конвейере соответственно. Конвейер оказывает заметное влияние на скорость выполнения линейных участков программ, которые могут выполняться параллельно, за исключением операций с плавающей точкой и команд переходов.
  7. Встроенные устройства
    Основными компонентами центрального процессора являются ядро, кэш-память и шина.
    Ядро процессора
    выполняет инструкции. Операнды инструкций хранятся в регистрах. Размер регистров определяет разрядность процессора. Понятие «ядро» имеет и топологический смысл - оно размещено в центре микросхемы процессора, а по его периферии располагаются кэш-память и другие блоки. Один и тот же тип процессора может быть построен на различных «ядрах». Сегодня мы имеем многоядерные системы. Размещается 2, 4, 6, 8 ядер на одном кристалле.
    Кэш-память
    (RAM cache) - высокоскоростная статическая (SRAM) память, использующаяся для ускорения доступа к данным, хранящимся в более медленной, но дешевой динамической (DRAM) памяти. Ускорение доступа производится, когда процессор многократно обращается к одним и тем же данным или командам программы. Кэш сохраняет последние данные я команды, и процессор быстро считывает их из кэша. КЭШ является своего рода буфером, согласующим быстрый процессор и относительно медленную оперативную память, что значительно ускоряет процесс обработки данных.
    Бывает 2 типа: L1 и L2 (уровни 1 и 2 от англ. level - «уровень» ).
    Кэш L1 изначально был интегрирован в кристалл процессора и является его неотъемлемой частью. В нем размешаются инструкции процессора и данные для этих инструкций. Большой кэш L1 очень полезен в условиях многозадачности, так как он хранит так называемый контекст задач, т.е. информацию, необходи-мую для переключения на эти задачи при поочередном выполнении. Размер 2*32Кб, 2*64Кб, 2*128Кб,2*256 Кб.
    Кэш L2 служит для компенсации разницы частоты работы процессора и ОЗУ. Располагается или на мат. плате или в корпусе процессора, отдельно от его ядра. Основным его параметром является размер: чем он больше, тем быстрее работает система. Но память эта дорогостоящая, поэтому размер Кэша является компромиссом между производительностью и стоимостью системы. Типичные размеры кэш -памяти для разных процессоров (512Кб, 1Мб, 2Мб, 4Мб) Итак, Кэш позволяет повысить производительность за счет уменьшения случаев ожидания поступления информации из более медленной ОП. Нужные команды и данные берутся из более быстрого Кэша, куда заранее заносятся. Использование двух КЭШей исключает конфликты при считывании информации, идет одновременное считывание.
    Связь процессора с другими устройствами на системной плате, в частности с основной памятью, осуществляется через шину процессора . Заметим, что раньше и основная память, и процессор находились на одной шине, которая называлась системной. Сейчас для повышения производительности процессор имеет собственную шину. (1066МГц, 800МГц, 533МГц, 333МГц). Сопроцессор - специальный блок для операций с «плаваю¬щей точкой» (или запятой). Применяется для особо точных и сложных расчетов, а также для работы с рядом графических программ.
  8. В процессоре можно выделить еще следующие основные части:
    блок предсказания ветвлений (адреса перехода –БПАП);
    -блок вычислений с плавающей точкой;
    -средства обнаружения ошибок ЦП
    Контроль ветвлений программы .

    Если в программе встречается условный или безусловный переход, то после декодирования инструкции перехода и получения адреса процессор начинает считывать данные с нового адреса. Ясно, что до получения этого адреса конвейер простаивает. Подобная ситуация происходит достаточно часто, поэтому для снижения «негативных» последствий ветвлении программы все переходы, встречающиеся в программе, за-поминаются в специальном буфере адресов переходов (branch target buffer). При выполнении инструкции перехода процессор проверяет наличие адреса в буфере и начинает чтение программы с этого адреса. В случае безусловного перехода создается таблица «истории» переходов, исходя из которой процессор решает будет произведен переход или нет, и ачинает выполнение инструкций с предсказанного адреса — так называемое опережающее исполнение (speculative execution), Понятно, что если адрес предсказан неправильно, то все выполнение прекращается, конвейер очищается и начинается исполнение с правильного адреса. По-этому весьма важно, чтобы вероятность правильного прогноза была наиболее высокой. В современных процессорах она лежит в пределах 80-90%.
    Блок предсказания адреса перехода позволяет повысить производительность за счет экономии времени путем предсказания возможных путей выполнения разветвляющего алгоритма.
    Блок вычислений с плавающей точкой FPU (Floating Point Unit).
    Данный блок обеспечивает выполнение операций с плавающей точкой и мультимедийных операций ММХ. Обычно он содержит свой отдельный конвейер, так как правило, такие операции могут исполняться только в одном конвейере. На производительность блока FPU в последнее время стали обращать внимание из-за появления множества приложений, написанных для команд ММХ или для работы с трехмерной гра-фикой, не говоря уже о чисто вычислительных задачах.
    Являясь очень сложными устройствами, современные процессоры имеют возможности настройки своих параметров. Например, в процессорах Pentium можно отключать второй конвейер или блок предсказания ветвлений, что позволяет оценить прирост производительности, обеспечиваемый этими элементами ядра процессора. Кроме того, практически все процессоры имеют свою так называемую визитную карточку — специальную инструкцию, которая помогает однозначно идентифицировать процессор. Данная инструкция называется CPUID и выдает ИМЯ фирмы разработчика, тип семейств, модель и версию процессора, а также показывает его основные свойства, в частности наличие блока FPU или ММХ.
    Наличие средств обнаружения ошибок ЦП.
    В ЦП имеются устройства самотестирования для проверки работоспособности большинства элементов процессора. Используя специальный формат данных: бит четности , т.е. к каждому операнду добавляется бит четности, в результате все числа становятcя четными, появление нечетного числа – сигнал о сбое при работе процессора.

Средства термозащиты процессоров

Вы время работы процессоры сильно нагреваются - их температура достигает 7О…9О°С. Перегрев процессора грозит большими неприятностями, вплоть до полного выхода его из строя. Он может просто перегореть, как любой электрический прибор. Поэтому конструкция процессора должна предусматривать эффективную систему охлаждения. Собственно системный блок компьютера и так оснащен вентилятором, но он предназначен в основном для охлаждения самого блока питания и лишь частично для охлаждения материнской платы с установленным на ней процессором. Для современных процессоров, которые имеют мощность 40…70 Вт, этого совершенно недостаточно.
Поэтому центральный процессор снабжен своей собственной системой охлаждения . Она состоит из радиатора , который крепится непосредственно на корпусе процессора, и вентилятора , который охлаждает ребра радиатора.

Радиатор

Это металлическая пластина с ребристой поверхностью, за счет него существенно увеличивается теплообмен процессора с окружающей средой. Площадь поверхности кристалла процессора чрезвычайно мала и не превышает нескольких квадратных сантиметров. Это совершенно недостаточно для эффективного отвода тепловой мощности, рассеиваемой процессором. Благодаря ребристой поверхности радиатор в сотни раз увеличивает площадь своего теплового контакта с окружающей средой.
В настоящее время используются различные типы радиаторов.

Прессованные (экструзионные) радиаторы

Это наиболее простые, дешевые и распространенные радиаторы. Для их производства используется алюминий - металл с достаточно высокой теплопроводностью. Радиаторы изготавливаются методом прессования, что позволяет получить достаточно сложный профиль поверхности и достичь хороших теплоотводящих свойств.

Складчатые радиаторы

Отличаются довольно интересным технологическим исполнением: на базовой пластине радиатора пайкой или с помощью специальных теплопроводящих паст закрепляется тонкая металлическая лента, свернутая в гармошку, складки Которой играют роль ребристой поверхности. Такие радиаторы обычно изготавливаются из меди - она имеет более высокую теплопроводность, чем алюминий.

Кованые (холодноформированные) радиаторы

Для их изготовления используется технология холодного прессования, которая позволяет формировать поверхность радиатора в виде стрежней различного сечения. Основной материал - алюминий, но иногда для улучшения теплоотводящих свойств в основание устанавливают медные пластины. Это довольно сложная технология, поэтому кованые радиаторы дороже «экструзионных» и «складчатых», но не всегда лучше в плане тепловой эффективности.

Точеные радиаторы

На сегодня это наиболее дорогостоящие изделия, поскольку их производство основано на высокоточной механической обработке монолитных заготовок. Они отличаются не только самыми высокими эксплуатационными характеристи¬ками, но и высокой ценой. Изготавливаются из меди и алюминия.

Вентиляторы

На сегодня даже самые совершенные радиаторы не справляются с задачей эффективного охлаждения высокопроизводительных процессоров. Существенно улучшить теплообмен можно только с помощью специальных микровентиляторов - кулеров (от англ. cool - «охлаждать») , которые устанавливаются над радиатором и обдувают его ребра струей воздуха.
Как и любой другой вентилятор, кулер состоит из электродвигателя, на оси которого закреплена крыльчатка. Основной характеристикой вентилятора является его производительность - величина, показывающая объем прокачиваемого воздушного потока. Типичные значения расхода - 10 …80 кубических дюймов в минуту. Чем больше производительность вентилятора, тем лучше он охлаждает процессор. Производительность вентилятора зависит от размера крыльчатки и скорости вращения электродвигателя. Чем быстрее вращается крыльчатка, тем выше производительность вентилятора. Типичные значения скорости вращения - 1500… 7000 об/мин. С увеличением размера крыльчатки увеличиваются производительность, габаритные размеры и масса вентилятора.
Наиболее распространенные типоразмеры - 60х60х 15 мм, 60x60x20 мм, 60x60x25 мм, 70х70х 15 мм, 80x80x25 мм. Среди эксплуатационных параметров можно выделить уровень шума и срок службы вентилятора. Уровень шума вентилятора вы¬ражается в децибеллах (дБ) и обычно находится в диапазоне 20… 50 дБ. Тихими считаются вентиляторы с уровнем шума менее 30 дБ. Срок службы (или время наработки на отказ) венти-лятора выражается в тысячах часов и является показателем его надежности и долговечности. Срок службы вентиляторов составляет 40…50 тыс.ч, что составляет около пяти лет непрерывной круглосуточной работы.

В большинстве процессоров Intel используется конструкция корпуса, называемая FC-PGA (аббревиатура от Flip Chip Pin Grid Array - перевернутый чип с массивом игольчатых контактов). Дело в том, что кристалл перевернут и выходит на верхнюю часть корпуса для лучшего охлаждения. Поверхность ядра закрыта теплорассеивателем, который представляет собой медную пластину, покрытую тонким защитным слоем. Количе¬ство контактов (pin) на корпусе может быть различным: 423, 478, 604, 775. Процессоры (как, впрочем, и все другие компоненты ПК) могут поставляться как в обычном варианте с минимальной комплектацией (OEM - Original Equipment Manufacturer ), так и в боксовом варианте (in Box ), т.е. в упаковочной коробке, снабженной руководством по установке и 3-летней гарантией. Стоимость процессора in Box всего на несколько долларов выше, чем в обычной OEM упаковке, что совсем недорого с учетом цены на кулер, которым снабжается боксовая упаковка.

Разгон

Разгон (overclocking) - режим работы любого устройства на более высокой частоте, чем штатная, т.е. на частоте, предусмотренной в его рабочих характеристиках. Разгон возможен потому, что большинство устройств имеет определенный запас прочности. Обычно небольшое увеличение частоты проходит безболезненно и дает выигрыш порядка 10%. При превышении критического значения возможен перегрев и полный выход дорогостоящего устройства из строя. Поэтому пользователь производит разгон на свой страх и риск, зачастую лишаясь гарантии продавца. Основной объект разгона - центральный процессор. Однако разгонять можно и память, и процессор видеокарты.

Порядок установки процессора Pentium IV в гнездо системной платы

  • установить рычаг гнезда процессора (А) в положение «Открыто», для чего надо отвести его чуть в сторону и приподнять вверх до упора;
  • установить процессор в гнездо и перевести рычаг в положение «закрыто» (золотой треугольник на процессоре должен смотреть в основание защелки);
  • нанести теплопроводящий состав на верхнюю поверхность процессора (Б) и равномерно распределить пасту по его поверхности;
  • совместить основание радиатора с механизмом крепления и установить радиатор на процессор. Не давая пасте засохнуть, сделать несколько равномерных колебательных движений, слегка двигая радиатор по про-цессору, чтобы термопаста равномерно распределилась по радиатору;
  • начиная с центрального лепестка (В) установить зажимы (Г) на лепестки механизма крепления (В, Д, Е).
  • вставить разъем (Ж) кабеля вентилятора в розетку с тремя штырьками, которая обычно находится неподалеку от разъема центрального процессора и обозначается CPU FAN.

Примеры современных процессоров фирмы Intel

    Процессор Intel® Core™ i7 Extreme Edition

  • Второе поколение процессоров Intel® Core™ i7
  • Второе поколение процессоров Intel® Core™ i5
  • Второе поколение процессоров Intel® Core™ i3

  • Семейство процессоров Intel® Core™ vPro™
  • Intel Quad-Core Xeon X5550 для серверов

  • Процессор Intel Xeon E5620, для рабочих станций